Optimal Enforcement on a Pure Seller's Market of Illicit Drugs

  • V. Borisov
  • G. Feichtinger
  • A. Kryazhimskii
Article

Abstract

An optimal control problem for the dynamic enforcement (crackdown) of dealers on a pure seller's market for illicit drugs is explored. Theorems on existence and uniqueness of the optimal synthesis are proved. Using a technique of resolution of singularities for degenerate differential equations, we design analytically an optimal enforcement policy.

Pontryagin maximum principle optimal synthesis degenerate fixed points of ordinary differential equation optimal enforcement illicit drug markets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caulkins, J. P., Local Drugs Market's Response to Focused Police Enforcement, Operations Research, Vol. 41, pp. 848-863, 1993.Google Scholar
  2. 2.
    Baveja, A., Batta, R., Caulkins, J. P., and Karwan, M. H., Modeling the Response of Illicit Drug Market to Local Enforcement, Socio-Economic Planning Science, Vol. 27, pp. 73-89, 1993.Google Scholar
  3. 3.
    Kort, P., Feichtinger, G., Hartl, R. F., and Haunschmied, J. L., Optimal Enforcement Policies (Crackdowns) on a Drug Market, Optimal Control Applications and Methods, Vol. 19, pp. 169-184, 1998.Google Scholar
  4. 4.
    Ioffe, A. D., and Tikhomirov, V. M., Theory of Extremal Problems, Nauka, Moscow, Russia, 1974 (in Russian).Google Scholar
  5. 5.
    Dunford, N., and Schwarz, J. T., Linear Operators, Part 1: General Theory, Interscience Publishers (Wiley), New York, NY, 1958.Google Scholar
  6. 6.
    Pontryagin, L. S., Boltyanskii, V. G., gamkrelidze, R. G., and Mishchenko, E. F., Mathematical Theory of Optimal Processes, Macmillan, New York, NY, 1964.Google Scholar
  7. 7.
    Hartman, P., Ordinary Differential Equations, J. Wiley and Sons, New York, NY, 1964.Google Scholar
  8. 8.
    Dechert, W. D., and Nishimura, K., A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Nonconcave Production Function, Journal of Economic Theory, Vol. 31, pp. 332-354, 1983.Google Scholar
  9. 9.
    Feichtinger, G., GRIENAUER, W., and Tragler, G., Optimal Dynamic Law Enforcement, Forschungsbericht 197, Institute of Econometrics, OR, and Systems Theory, Vienna University of Technology, Vienna, Austria, 1997.Google Scholar
  10. 10.
    Wirl, F., and Feichtinger, G., Conditions for and Existence of Unstable Equilibria in Concave Intertemporal Optimizations, Working Paper, Otto von Guericke University of Magdeburg, Magdeburg, Germany, 1998.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • V. Borisov
    • 1
    • 2
  • G. Feichtinger
    • 3
  • A. Kryazhimskii
    • 4
    • 5
  1. 1.State Academy for Custom ServicesCherkizovoRussia
  2. 2.Mechanical-Mathematical DepartmentLomonosov State UniversityMoscowRussia
  3. 3.Institute of Econometrics, OR, and Systems TheoryVienna University of TechnologyViennaAustria
  4. 4.Steklov Institute of MathematicsRussian Academy of SciencesMoscowRussia
  5. 5.International Institute for Applied Systems Analysis (IIASA)ViennaAustria

Personalised recommendations