Journal of Materials Science

, Volume 34, Issue 16, pp 3859–3866

Preparation, structure and properties of uniaxially oriented polyethylene-silver nanocomposites

  • Y. Dirix
  • C. Bastiaansen
  • W. Caseri
  • P. Smith
Article

Abstract

Uniaxially oriented composites of high-density polyethylene and silver nanoparticles were prepared using solution-casting, melt-extrusion and solid-state drawing techniques. The absorption spectrum in the visible wavelength range of the drawn nanocomposites was observed to strongly depend on the polarisation direction of the incident light. For instance, the nanocomposites appear bright yellow or red when the vibration direction of linearly polarised light is perpendicular or parallel, respectively, to the drawing axis. The optical anisotropy of the drawn nanocomposites originates from uniaxially oriented, pearl-necklace type of arrays of nanoparticles of high aspect ratios. The absorption spectrum of the nanocomposites can be shifted to higher wavelengths using appropriate annealing procedures. The annealing results in an increased size of the primary silver particles, due to Ostwald ripening, and consequently a range of polarisation-dependent colours can be generated in the drawn nanocomposites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Cotton and G. Wilkinson, “Anorganische Chemie” (Verlag Chemie, Weinheim, 1974) p. 1110.Google Scholar
  2. 2.
    G. Schmid and A. Lehnert, Angew. Chem. 101(1989) 773.Google Scholar
  3. 3.
    M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, J. Chem. Soc. Chem. Commun. (1994) 801.Google Scholar
  4. 4.
    B. A. Korgel and D. Fitzmaurice, Adv. Mater. 10(1998) 661.Google Scholar
  5. 5.
    J. R. Heath, C. M. Knobler and D. V. Leff, J. Phys. Chem. B 101(1997) 189.Google Scholar
  6. 6.
    K. E. Gonsalves, G. Carlson, X. Chen, S. K. Gayen, R. Perez and M. Jose-Yacaman, Nanostruct. Mater. 7(1996) 293.Google Scholar
  7. 7.
    K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda and M. Jose-Yacaman, ACS Symp. Ser. 622 (1996) 151.Google Scholar
  8. 8.
    D. Yu. Godovski, Adv. Polym. Sci. 119(1995) 81.Google Scholar
  9. 9.
    L. L. Beecroft and C. K. Ober, Chem. Mater. 9(1997) 1302.Google Scholar
  10. 10.
    E. J. A. Pope, M. Asami and J. D. Mackenzie, J. Mater. Res. 4(1989) 1018.Google Scholar
  11. 11.
    T. Kyprianidou-Leodidou, P. Margraf, W. Caseri, U. W. Suter and P. Walther, Polym. Adv. Technol. 8(1997) 505.Google Scholar
  12. 12.
    W. Mahler, Inorg. Chem. 27(1988) 435.Google Scholar
  13. 13.
    I. A. Akimov, I. Yu. Denisyuk and A. M. Meshkov, Opt. Spektrosk. 72(1992) 1026; Engl. Transl: Opt. Spectrosc. 72 (1992) 558.Google Scholar
  14. 14.
    Y. Wang and N. Herron, J. Phys. Chem. 95(1991) 525.Google Scholar
  15. 15.
    S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki, A. Nakamura, Jpn. J. Appl. Phys. 33(1994) L331.Google Scholar
  16. 16.
    Y. Wang and W. Mahler, Opt. Commun. 61(1987) 233.Google Scholar
  17. 17.
    L. Zimmermann, M. Weibel, W. Caseri, U. W. Suter and P. Walther, Polym. Adv. Technol. 4(1992) 1.Google Scholar
  18. 18.
    T. Kyprianidou-Leodidou, W. Caseri and U. W. Suter, J. Phys. Chem. 98(1994) 8992.Google Scholar
  19. 19.
    Y. Dirix, C. Bastiaansen, W. Caseri and P. Smith, Adv. Mater. 11(1999) 223.Google Scholar
  20. 20.
    C. Bastiaansen, H. W. Schmidt, T. Nishino and P. Smith, Polymer 34(1993) 3951.Google Scholar
  21. 21.
    W. Ostwald, “Die Welt der Vernachlässigten Dimensionen,” 12th ed. (Dresden und Leipzig Verlag, 1944) p. 60.Google Scholar
  22. 22.
    J. Turkevich, G. Garton and P. C. Stevenson, J. Colloid Sci. Suppl. 1(1954) 26.Google Scholar
  23. 23.
    R. Zsigmondy, “Kolloidchemie, 1. Allgemeiner Teil” (Otto Spamer, Leipzig, 1925) p. 43.Google Scholar
  24. 24.
    F. Zimmermann and A. Wokaun, Mol. Phys. 73(1991) 959.Google Scholar
  25. 25.
    H. Ambronn, Kgl. Sächs. Ges. Wiss. 8(1896) 613.Google Scholar
  26. 26.
    H. Ambronn and R. Zsigmondy, Ber. Sächs. Ges. Wiss. 51(1899) 13.Google Scholar
  27. 27.
    S. Berkman, J. BÖhm and H. Zocher, Z. Physik. Chem. 124(1926) 83.Google Scholar
  28. 28.
    A. Frey-Wyssling, Protoplasma 27(1937) 372.Google Scholar
  29. 29.
    Idem., ibid. 27(1937) 563.Google Scholar
  30. 30.
    E. H. Land and C. D. Wset, in “Colloid Chemistry,” edited by J. Alexander (Reinhold, New York, 1946) p. 170.Google Scholar
  31. 31.
    E. H. Land, J. Opt. Soc. Amer. 41(1952) 957.Google Scholar
  32. 32.
    C. A. Foss Jr., G. L. Hornyak, J. A. Stockert and C. R. Martin, Mater. Res. Soc. Symp. Proc. 286(1992) 431.Google Scholar
  33. 33.
    N. A. F. Al-rawashdeh, M. L. Sandrock, C. J. Seugling and C. A. Foss, J. Phys. Chem. B. 102(1998) 361.Google Scholar
  34. 34.
    A. H. Lu, G. H. Lu, A. M. Kessinger and C. A. Foss, ibid. 101(1997) 9139.Google Scholar
  35. 35.
    M. Schadt and W. Helfrich, Appl. Phys. Lett. 18(1971) 127.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Y. Dirix
    • 1
  • C. Bastiaansen
    • 1
  • W. Caseri
    • 1
  • P. Smith
    • 1
  1. 1.Department of MaterialsETH ZürichZürichSwitzerland

Personalised recommendations