Advertisement

Journal of Engineering Mathematics

, Volume 38, Issue 1, pp 77–90 | Cite as

Restabilization in structures susceptible to localized buckling: an approximate method for the extended post-buckling regime

  • M. Khurram Wadee
  • Andrew P. Bassom
Article

Abstract

Localized buckling in structures has been extensively studied in the context of simple nonlinear models which capture the essence of the phenomenon near the lowest critical load. In this study we apply a non-periodic Rayleigh–Ritz procedure to track localizations into the far post-buckling regime where the structure regains stability after the initial destabilization. The results are compared against independent numerical solutions and good agreement is found.

dynamical systems double-scale perturbation non-periodic Rayleigh–Ritz analysis homoclinic and heteroclinic orbits structural localization. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Fox, An Introduction to the Calculus of Variations. London: Oxford University Press (1963) 271pp.Google Scholar
  2. 2.
    J. M. T. Thompson and G. W. Hunt, A General Theory of Elastic Stability. London: Wiley (1987) 322pp.Google Scholar
  3. 3.
    G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Structural localization phenomena and the dynamical phase-space analogy. Proc. R. Soc. London A 425 (1989) 245-267.Google Scholar
  4. 4.
    G. W. Hunt and M. K. Wadee, Comparative lagrangian formulations for localized buckling. Proc. R. Soc. London A 434 (1991) 485-502.Google Scholar
  5. 5.
    M. K. Wadee, G. W. Hunt and A. I. M. Whiting, Asymptotic and Rayleigh-Ritz routes to localized buckling solutions in an elastic instability problem. Proc. R. Soc. London A 453 (1997) 2085-2107.Google Scholar
  6. 6.
    G. W. Hunt, M. K. Wadee and N. Shiacolas, Localized elasticæ for the strut on the linear foundation. Trans. ASME J. Appl. Mech. 60 (1993) 1033-1038.Google Scholar
  7. 7.
    M. K. Wadee, The elastic strut on an elastic foundation: A model localized buckling problem. In: A. R. Champneys, G. W. Hunt and J. M. T. Thompson (eds.), Localization and Solitary Waves in Solid Mechanics. Singapore World Scientific (1999). To appear.Google Scholar
  8. 8.
    G. J. Lord, A. R. Champneys and G. W. Hunt, Computation of localized post buckling in long axially compressed cylindrical shells. Phil. Trans. R. Soc. London A 355 (1997) 2137-2150.Google Scholar
  9. 9.
    P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian Hopf bifurcation. Physica D (1999) Volume 129, pp. 147-170.Google Scholar
  10. 10.
    M. K. Wadee, Elements of a Langrangian Theory of Localized Buckling. PhD thesis: Imperial College of Science, Technology and Medicine, London (1993) 245pp.Google Scholar
  11. 11.
    G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. A.Wadee, C. J. Budd and G. J. Lord, Cellular buckling in long structures. Nonlinear Dynamics (1999) to appear.Google Scholar
  12. 12.
    T.-S. Yang and T. R. Akylas, On asymmetric gravity-capillary solitary waves. J. Fluid Mech. 330 (1997) 215-232.Google Scholar
  13. 13.
    A. R. Champneys and J. F. Toland, Bifurcation of a plethora of multi-modal homoclinic orbits for Hamiltonian systems. Nonlinearity 6 (1993) 665-721.Google Scholar
  14. 14.
    M. K. Wadee and A. P. Bassom, Effects of exponentially small terms in the perturbation approach to localized buckling. Proc. R. Soc. London A (1999). Volume 455, pp. 2351-2370.Google Scholar
  15. 15.
    Wolfram Research Inc., MATHEMATICA: A System for doing Mathematics by Computer. Champaign, Illinois: Wolfram Research, Inc. (1995) 749pp.Google Scholar
  16. 16.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in C. The Art of Scientific Programming. New York: Cambridge University Press (1992) 994pp.Google Scholar
  17. 17.
    E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede and X. Wang, AUTO 97: Continuation and bifurcation software for ordinary differential equations. (1997). Available via anonymous ftp from ftp://ftp.cs.concordia.ca/pub/doedel/auto.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. Khurram Wadee
    • 1
  • Andrew P. Bassom
    • 2
    • 3
  1. 1.School of Engineering and Computer ScienceUniversity of ExeterExeter, DevonU.K.
  2. 2.School of Mathematical SciencesUniversity of ExeterExeter, DevonU.K
  3. 3.New CollegeUniversity of New South WalesSydneyAustralia

Personalised recommendations