Advertisement

Journal of Statistical Physics

, Volume 96, Issue 5–6, pp 1163–1330 | Cite as

Coulomb Systems at Low Density: A Review

  • David C. Brydges
  • Ph. A. Martin
Article

Abstract

Results on the correlations of low-density classical and quantum Coulomb systems at equilibrium in three dimensions are reviewed. The exponential decay of particle correlations in the classical Coulomb system, Debye–Hückel screening, is compared and contrasted with the quantum case, where strong arguments are presented for the absence of exponential screening. Results and techniques for detailed calculations that determine the asymptotic decay of correlations for quantum systems are discussed. Theorems on the existence of molecules in the Saha regime are reviewed. Finally, new combinatoric formulas for the coefficients of Mayer expansions are presented and their role in proofs of results on Debye–Hückel screening is discussed.

Coulomb plasma Saha screening Debye–Hückel virial equation of state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. A. Abdesselam and V. Rivasseau, Trees, forests and jungles: A botanical garden for cluster expansions, in Constructive Physics, V. Rivasseau, ed. (Springer, Berlin, Heidelberg, New York, 1995), pp. 7-36.Google Scholar
  2. A. Alastuey, Solvable models of Coulomb systems in two dimensions, in Strongly Coupled Plasma, F. J. Rogers and H. E. Dewitt, eds., NATO Advanced Science Institutes Series B 154 (Plenum Press, New York, 1987), pp. 331-347.Google Scholar
  3. A. Alastuey, Statistical mechanics of quantum plasmas. Path integral formalism, in The Equation of State in Astrophysics, G. Chabrier and E. Schatzman, eds, IAU Colloquium 147 (Cambridge University Press, 1994), pp. 43-77.Google Scholar
  4. A. Alastuey and F. Cornu, Correlations in the Kosterlitz-Thouless phase of the two-dimensional Coulomb gas, J. Stat. Phys. 66:165-231 (1992).Google Scholar
  5. A. Alastuey and F. Cornu, The 2D classical Coulomb gas near the zero-density Kosterlitz-Thouless critical point: correlations and critical line, J. Stat. Phys. 89:6-19 (1997a).Google Scholar
  6. A. Alastuey and P. Cornu, Algebraic tails in three-dimensional quantum plasmas, J. Stat. Phys. 89:20-35 (1997b).Google Scholar
  7. A. Alastuey and F. Cornu, Critical line near the zero-density critical point of the Kosterlitz-Thouless transition, J. Stat. Phys. 87:891-895 (1997c).Google Scholar
  8. A. Alastuey and P. A. Martin, Decay of correlations in classical fluids with long-range forces, J. Stat. Phys. 39:405-426 (1985).Google Scholar
  9. A. Alastuey and P. A. Martin, Absence of exponential clustering for static quantum correlations and time-displaced correlations in charged fluids, Eur. Phys. Lett. 6:385-390 (1988).Google Scholar
  10. A. Alastuey and P. A. Martin, Absence of exponential clustering in quantum Coulomb fluids, Phys. Rev. A 40:6485-6520 (1989).Google Scholar
  11. A. Alastuey and A. Perez, Virial expansion of the equation of state of a quantum plasma, Eur. Phys. Lett. 20:19-24 (1992).Google Scholar
  12. A. Alastuey and A. Perez, Virial expansion for quantum plasmas: Fermi-Bose statistics, Phys. Rev. E 53:5714-5728 (1996).Google Scholar
  13. A. Alastuey, F. Cornu, and P. A. Martin, Algebraic screening and van der Waals forces in partially ionized gases, in Strongly Coupled Coulomb Systems, G. Kalman, K. Blagoev, and J. J. M. Rommel, eds. (Plenum, 1998), pp. 705-708.Google Scholar
  14. A. Alastuey, F. Cornu, and A. Perez, Virial expansion for quantum plasmas: Diagrammatic resummations, Phys. Rev. E 49:1077-1093 (1994).Google Scholar
  15. A. Alastuey, F. Cornu, and A. Perez, Virial expansion for quantum plasmas: Maxwell-Boltzmann statistics, Phys. Rev. E 51:1725-1744 (1995).Google Scholar
  16. G. Battle and P. Federbush, A note on cluster expansions, tree graph identities, extra 1/N! factors!!!, Lett. Math. Phys. 8:55-57 (1984).Google Scholar
  17. S. Bekiranov and M. E. Fisher, Fluctuations in electrolytes: The Lebowitz and other correlation lengths, Phys. Rev. Lett. 81:5836-5839 (1998).Google Scholar
  18. S. Bekiranov and M. E. Fisher, Diverging correlation lengths in electrolytes: exact results at low densities, Phys. Rev. E 59:492-511 (1999).Google Scholar
  19. G. Benfatto, An iterated Mayer expansion for the Yukawa gas, J. Stat. Phys. 41:671-684 (1985).Google Scholar
  20. H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long range order of the one dimensional plasma, in Functional Integration and Its Applications, A. Arthurs, ed. (Clarendon, Oxford, 1975), pp. 1-14.Google Scholar
  21. H. J. Brascamp and E. H. Lieb, On extensions of the Brun-Minkowski and Prekopka-Leinler theorems, J. Funct. Anal. 22:366-389 (1976).Google Scholar
  22. I. Brevik and J. Høye, Van der Waals force derived from a quantum statistical mechanical path integral method, Physica A 153:420-440 (1988).Google Scholar
  23. D. Brydges and P. A. Martin, Sum rules for Coulomb systems with hard cores, in Mathematical Results in Statistical Mecllanics, S. Miracle-Sole, J. Ruiz and V. Zagrebnov, eds. (World Scientific, 1999), pp. 323-329.Google Scholar
  24. D. C. Brydges, A rigorous approach to Debye screening in dilute classical Coulomb systems, Commun. Math. Phys. 58:313-350 (1978).Google Scholar
  25. D. C. Brydges, A short course on cluster expansions, in Critical Phenomena, Random Systems, Gauge Theories, K. Osterwalder and R. Stora, eds., Les Houches Summer School (North Holland, Amsterdam, New York, 1984), pp. 131-183.Google Scholar
  26. D. C. Brydges, Functional integrals and their applications, Lecture notes with collaboration of Roberto Fernandez. Course in the “Troisième Cycle de la Physique en Suisse Romande”, May 1992. Manuscript 93-24, http://rene.ma.utexas.edu/mp_arc (1992).Google Scholar
  27. D. C. Brydges and P. Federbush, The cluster expansion in statistical mechanics, Commun. Math. Phys. 49:233-246 (1976).Google Scholar
  28. D. C. Brydges and P. Federbush, The cluster expansion for potentials with exponential fall-off, Commun. Math. Phys. 53:19-30 (1977).Google Scholar
  29. D. C. Brydges and P. Federbush, A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys. 19:2064-2067 (1978).Google Scholar
  30. D. C. Brydges and P. Federbush, Debye screening, Commun. Math. Phys. 73:197-246 (1980).Google Scholar
  31. D. C. Brydges and P. Federbush, Debye screening in classical Coulomb systems, in Rigorous Atomic and Molecular Physics, G. Velo and A. Wightman, eds., Erice Summer School (Plenum Press, Oxford, 1981), pp. 371-439.Google Scholar
  32. D. C. Brydges and G. Keller, Absence of Debye screening in the quantum Coulomb system, J. Stat. Phys. 76:285-297 (1994a).Google Scholar
  33. D. C. Brydges and G. Keller, Correlation functions of general observables in dipole type systems I: Accurate upper bounds, Helv. Phys. Acta 67:43-116 (1994b).Google Scholar
  34. D. C. Brydges and T. Kennedy, Mayer expansions and the Hamilton-Jacobi equation, J. Stat. Phys. 48:19-49 (1987).Google Scholar
  35. D. C. Brydges and E. Seiler, Absence of screening in certain lattice gauge and plasma models, J. Stat. Phys. 42:405-424 (1986).Google Scholar
  36. D. C. Brydges and H. Yau, Grad φ perturbations of massless Gaussian fields, Commun. Math. Phys. 129:351-392 (1990).Google Scholar
  37. L. Bugliaro, J. Frøhlich, and G. M. Graf, Stability of quantum electrodynamics with non-relativistic matter, Phys. Rev. Lett. 77:3494-3497 (1996).Google Scholar
  38. P. Choquard, H. Kunz, P. A. Martin, and M. Navet, One dimensional Coulomb systems, in Physics in One Dimension, J. Bernasconi and T. Schneider, eds., Springer Series in Solid State Sciences No. 23 (Springer, Berlin, 1981), pp. 335-350.Google Scholar
  39. E. G. D. Cohen and T. J. Murphy, New results in the theory of the classical electron gas, Phys. Fluids 12:1404-1411 (1969).Google Scholar
  40. J. G. Conlon, E. H. Lieb and H. T. Yau, The Coulomb gas at low temperature and low density, Commun. Math. Phys. 125:153-180 (1989).Google Scholar
  41. F. Cornu, Correlations in quantum plasma. I. Resummations in Mayer like diagrammatics, Phys. Rev. E 53:4562-4594 (1996a).Google Scholar
  42. F. Cornu, Correlations in quantum plasmas. II. Algebraic tails, Phys. Rev. E 53:4595-4631 (1996b).Google Scholar
  43. F. Cornu, Exact algebraic tails of static correlations in quantum plasmas at low density, Phys. Rev. Lett. 78:1464-1467 (1997a).Google Scholar
  44. F. Cornu, Exact low density free energy and algebraic tails of static correlations in quantum plasmas in a uniform magnetic field, Europhys. Lett. 37:591-596 (1997b).Google Scholar
  45. F. Cornu, Quantum plasma with or without uniform magnetic field. I and III. General formalism and algebraic tails of correlations, Phys. Rev. E 58:5268-5292, 5322-5346 (1998a).Google Scholar
  46. F. Cornu, Quantum plasma with or without uniform magnetic field. II. Exact low-density free energy, Phys. Rev. E 58:5293-5321 (1998b).Google Scholar
  47. F. Cornu and P. A. Martin, Electron gas beyond the random phase approximation: algebraic screening, Phys. Rev. A 44:4893-4910 (1991).Google Scholar
  48. P. Debye and E. Hückel, Zur Theorie der Electrolyte, Phys. Z 9:185-206 (1923).Google Scholar
  49. C. Deutsch, Y. Furutani, and M. M. Gombert, Nodal expansions for strongly coupled plasmas, Phys. Rep. 69:85-193 (1981).Google Scholar
  50. C. Deutsch and M. Lavaud, Equilibrium properties of a two-dimensional Coulomb gas, Phys. Rev. A 9:2598-2616 (1974).Google Scholar
  51. H. E. DeWitt, Evaluation of the quantum mechanical ring sum with Boltzmann statistics, J. Math. Phys. 3:1216-1228 (1962).Google Scholar
  52. H. E. DeWitt, Statistical mechanics of high temperature quantum plasmas beyond the ring approximation, J. Math. Phys. 7:616-626 (1966).Google Scholar
  53. H. E. DeWitt, M. Schlanges, A. Y. Sakakura, and W. D. Kraeft, Low density expansion of the equation of state for a quantum electron gas, Phys. Lett. 197:326-329 (1995).Google Scholar
  54. J. Dimock, Bosonization of massive fermions, Commun. Math. Phys. 198:247-281 (1998).Google Scholar
  55. J. Dimock and T. Hurd, Construction of the two-dimensional Sine-Gordon model for β<8π, Commun. Math. Phys. 156:547-580 (1993).Google Scholar
  56. F. Dyson and A. Lenard, Stability of matter I, J. Math. Phys. 8:423-434 (1967).Google Scholar
  57. F. Dyson and A. Lenard, Stability of matter II',, J. Math. Phys. 9:698-711 (1968).Google Scholar
  58. W. Ebeling, Statistische Thermodynamik der gebundenen Zustände in Plasmen, Ann. Phys. (Leipzig) 19:104-112 (1967).Google Scholar
  59. W. Ebeling, Abteilung der freien Energie von Quantenplasmen kleiner Dichte aus den exakten Streuphasen, Ann. Phys. (Leipzig) 22:33-39 (1968).Google Scholar
  60. W. Ebeling, W.-D. Kraeft and D. Kremp, Theory of Bound States and Ionizatior Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976).Google Scholar
  61. S. F. Edwards and A. Lenard, Exact statistical mechanics of a one dimensional system with Coulomb forces II. The method of functional integration, J. Math. Phys. 3:778-792 (1962).Google Scholar
  62. P. Federbush, Positivity conditions on correlation functions that imply Debye screening, J. Math. Phys. 20:1090-1092 (1979).Google Scholar
  63. P. Federbush and T. Kennedy, Surface effects in Debye screening, Commun. Math. Phys. 102:361-423 (1985).Google Scholar
  64. C. Fefferman, The atomic and molecular nature of matter, Rev. Math. Iberoamericana 1:1-44 (1985).Google Scholar
  65. C. Fefferman, The n-body problem in quantum mechanics, Commun. Pure and Appl. Math. 39(S1):67-109 (1986).Google Scholar
  66. C. Fefferman, Stability of Coulomb systems in a magnetic field, Proc. Natl. Acad. Sci. 92:5006-5077 (1995).Google Scholar
  67. C. Fefferman, J. Frohlich and G. M. Graf, Stability of ultraviolet-cutoff quantum electrodynamics with non relativistic matter, Commun. Math. Phys. 190:309-330 (1998).Google Scholar
  68. A. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).Google Scholar
  69. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integral (McGrawHill, New York, 1965).Google Scholar
  70. M. E. Fisher, The story of Coulombic criticality, J. Stat. Phys. 75:1-36 (1994).Google Scholar
  71. M. E. Fisher, The nature of criticality in ionic fluids, J. Phys.: Condens. Matter 8:9103-9109 (1996).Google Scholar
  72. M. E. Fisher and Y. Levin, Criticality in ionic fluids: Debye-Hückel theory, Bjerrum, and beyond, Phys. Rev. Lett. 71:3826-3829 (1993).Google Scholar
  73. M. E. Fisher, X. Li and Y. Levin, On the absence of intermediate phases in the two-dimensional Coulomb gas, J. Stat. Phys. 79:1-11 (1995).Google Scholar
  74. J.-R. Fontaine, Debye-Hückel limit of quantum Coulomb systems. I. Pressure and diagonal reduced density matrices, Commun. Math. Phys. 103:241-257 (1986).Google Scholar
  75. J.-R. Fontaine and P. A. Martin, Equilibrium equations and symmetries of classical Coulomb systems, J. Stat. Phys. 36:163-179 (1984).Google Scholar
  76. P. J. Forrester, Selberg correlation integrals and the 1/r 2 quantum many-body problem, Nucl. Phys. B 388:671-699 (1992).Google Scholar
  77. P. J. Forrester, Exact integral formulas and asymptotic correlations in the 1/r 2 quantum many-body problem, Phys. Lett. A 179:127-130 (1993a).Google Scholar
  78. P. J. Forrester, Recurrence equations for computation of correlations in the 1/r 2 quantum many-body system, J. Stat. Phys. 72:39-50 (1993b).Google Scholar
  79. P. J. Forrester, B. Jancovici, and G. Teélez, Universality in some classical Coulomb systems of restricted dimension, J. Stat. Phys. 84:359-378 (1996).Google Scholar
  80. J. Fröhlich, Classical and quantum statistical mechanics in one and two dimensions, Commun. Math. Phys. 47:233-268 (1976).Google Scholar
  81. J. Fröhlich and Y. M. Park, Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems, Commun. Math. Phys. 59:235-266 (1978).Google Scholar
  82. J. Fröhlich and Y. M. Park, Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. II Bose-Einstein and Fermi-Dirac statistics, J. Stat. Phys. 23:701-753 (1980).Google Scholar
  83. J. Fröhlich and T. Spencer, Kosterlitz-Thouless transition in the two dimensional Abelian spin systems and Coulomb gas, Commun. Math. Phys. 81:527-602 (1981a).Google Scholar
  84. J. Fröhlich and T. Spencer, On the statistical mechanics of classical Coulomb and dipole gases, J. Stat. Phys. 24:617-701 (1981b).Google Scholar
  85. T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau ▽φ, interface model, Commun. Math. Phys. 185(1):1-36 (1997).Google Scholar
  86. G. Gallavotti, Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Rev. Mod. Phys. 57:471-562 (1985).Google Scholar
  87. G. Gallavotti and F. Nicolo, Renormalization theory in four dimensional scalar fields I, Commun. Math. Phys. 100:545-590 (1985a).Google Scholar
  88. G. Gallavotti and F. Nicolo, The screening phase transition in the two-dimensional Coulomb gas, J. Stat. Phys. 39:133-156 (1985b).Google Scholar
  89. G. Gallavotti and F. Nicolo, Renormalization theory in four dimensional scalar fields II, Commun. Math. Phys. 101:247-282 (1986).Google Scholar
  90. K. Gawedzki and A. Kupiainen, Block spin renormalization group for dipole gas and (▽φ)4, Ann. Phys. (N.Y.) 147:198-243 (1983).Google Scholar
  91. I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 1 (Academic Press, New York, 1964).Google Scholar
  92. J. Ginibre, Reduced density matrices of quantum gases. I. Limit of infinite volume, J. Math. Phys. 6:238-251 (1965).Google Scholar
  93. J. Ginibre, Some applications of functional integration in statistical mechanics, in Statistical Mechanics and Quantum Field Theory, C. DeWitt and R. Stora, eds., Les Houches (Gordon and Breach, 1971), pp. 327-427.Google Scholar
  94. J. Glimm and A. Jaffe, Quantum Physics, A Functional Integral Point of View, 2nd ed. (Springer, Berlin, 1987).Google Scholar
  95. J. Glimm, A. Jaffe and T. Spencer, The Wightman axioms and particle structure in the P(φ)2 quantum field model, Ann. Math. 100:585-632 (1974).Google Scholar
  96. M. M. Gombert and D. Leger, Wigner-Kirkwood quantum corrections to the pair distribution function in a one-component plasma, Phys. Lett. A 185:417-422 (1994).Google Scholar
  97. M. Göpfert and G. Mack, Iterated Mayer expansions for classical gases, Commun. Math. Phys. 81:97-126 (1981).Google Scholar
  98. G. M. Graf, Stability of matter through an electrostatic inequality, Helv. Phys. Acta 70:72-79 (1997).Google Scholar
  99. G. M. Graf and D. Schenker, The free energy of systems with net charge, Lett. Math. Phys. 35:75-83 (1995a).Google Scholar
  100. G. M. Graf and D. Schenker, On the molecular limit of Coulomb gases, Commun. Math. Phys. 174:215-227 (1995b).Google Scholar
  101. R. Griffith, Free energy of interacting magnetic dipoles, Phys. Rev. 176:655-659 (1968).Google Scholar
  102. J. Groeneveld, Two theorems on classical many-particle systems, Phys. Lett. 3:50-51 (1962).Google Scholar
  103. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London.Google Scholar
  104. E. Hauge and P. Hemmer, The two-dimensional coulomb gas, Phys. Norv. 5:209-217 (1971).Google Scholar
  105. J. Høye and G. Stell, Statistical mechanics of polar systems: dielectric constant for dipolar fluids, J. Chem. Phys. 61(2):562-572 (1974).Google Scholar
  106. J. Høye and G. Stell, Statistical mechanics of polar systems II, J. Chem. Phys. 64(5):1952-1966 (1976).Google Scholar
  107. J. Høye and G. Stell, Quantum statistical and mechanical models for polarizable fluid, J. Chem. Phys. 75:5133-5142 (1981).Google Scholar
  108. J. S. Høye and G. Stell, Path integral formulation for quantized fermion and boson fluids, J. Stat. Phys. 77:361-381 (1994).Google Scholar
  109. W. Hughes, Thermodynamics for Coulomb systems: a problem at vanishing particle density, J. Stat. Phys. 41:975-1013 (1985).Google Scholar
  110. J. Imbrie, Debye screening for Jellium and other Coulomb systems, Commun. Math. Phys. 87:515-565 (1983a).Google Scholar
  111. J. Imbrie, Iterated Mayer expansions and their application to Coulomb systems, in Scaling and Self Similarity in Physics. Renormalization in Statistical Mechanics and Dynamics, J. Fröhlich, ed. (Birkhäuser, Boston, 1983b), pp. 163-179.Google Scholar
  112. B. Jancovici, Quantum corrections to the radial distribution function of a fluid, Mol. Phys. 32:1177-1179 (1976).Google Scholar
  113. B. Jancovici, Exact results for the two-dimensional one-component plasma, Phys. Rev. Lett. 46:386-388 (1981).Google Scholar
  114. B. Jancovici, Two-dimensional Coulomb systems: Solvable models at Γ=2, in Proceedings of the International Conference on Physics of Strongly Coupled Plasma, S. Ichimaru, ed. (Yamada Science Foundation, Elsevier, 1990), pp. 285-296.Google Scholar
  115. B. Jancovici, Inhomogeneous two-dimensional plasmas, in Fundamentals of Inhomogeneous Fluids, D. Henderson, ed. (Marcel Dekker, New York, 1992), pp. 201-237.Google Scholar
  116. B. Jancovici, Universal critical-like features of Coulomb systems, in Proceedings of the International Conference on Physics of Strongly Coupled Plasma, W. Kraeft and M. Schlanges, eds. (World Scientific, Singapore, 1996), pp. 109-118.Google Scholar
  117. B. Jancovici, G. Manificat, and C. Pisani, Coulomb systems seen as critical systems: Finite-size effects in two dimensions, J. Stat. Phys. 76:307-329 (1994).Google Scholar
  118. M. Kac, On the partition function of one dimensional gas, Phys. Fluids 2:8-12 (1959).Google Scholar
  119. T. Kennedy, A lower bound for a classical charge symmetric system, J. Stat. Phys. 28:633-638 (1982).Google Scholar
  120. T. Kennedy, Debye-Hückel theory for charge symmetric Coulomb systems, Commun. Math. Phys. 92:269-294 (1983).Google Scholar
  121. T. Kennedy, Mean field theory for Coulomb systems, J. Stat. Phys. 37:529-559 (1984).Google Scholar
  122. M. Kiessling, Uniform upper bounds (and thermodynamic limit) for the correlation functions of symmetric Coulomb-type systems, J. Stat. Phys. 66:1359-1382 (1992).Google Scholar
  123. H. Koch and P. Wittwer, On the renormalization group transformation for scalar hierarchical models, Commun. Math. Phys. 138:537-568 (1991).Google Scholar
  124. H. Koch and P. Wittwer, A nontrivial renormalization group fixed point for the Dyson-Baker hierarchical model, Commun. Math. Phys. 164:627-647 (1994).Google Scholar
  125. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensions, J. Phys. C 6:1181-1203 (1973).Google Scholar
  126. W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particles (Plenum Press, New York, 1986).Google Scholar
  127. C. Langreth and S. H. Vosko, Exact electron-gas response function at high density, Phys. Rev. Lett. 59:497-500 (1987).Google Scholar
  128. J. Lebowitz and E. Lieb, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett. 22:631-634 (1969).Google Scholar
  129. J. Lebowitz and R. Pena, Low density form of the free energy of real matter, J. Chem. Phys. 59:1362-1364 (1973).Google Scholar
  130. J. Lebowitz and G. Stell, Equilibrium properties of a system of charged particles, J. Chem. Phys. 49:3706-3717 (1968).Google Scholar
  131. J. L. Lebowitz and P. A. Martin, On potential and field fluctuations in classical Coulomb systems, J. Stat. Phys. 34:287-311 (1984).Google Scholar
  132. B. P. Lee and M. E. Fisher, Density fluctuations in an electrolyte from the generalized Debye-Hückel theory, Phys. Rev. Lett. 76:2906-2909 (1996).Google Scholar
  133. B. P. Lee and M. E. Fisher, Charge oscillations in Debye-Hückel theory, Eur. Phys. Lett. 39:611-616 (1997).Google Scholar
  134. P. Lemberger, Large-field versus small-field expansions and Sobolev inequalities, J. Stat. Phys. 79(3-4):525-568 (1995).Google Scholar
  135. A. Lenard, Exact statistical mechanics of a one dimensional system with Coulomb forces, J. Math. Phys. 2:682-693 (1961).Google Scholar
  136. Y. Levin and M. E. Fisher, Criticality in the hard sphere ionic fluid, Physica A 225:164-220 (1995).Google Scholar
  137. E. H. Lieb, The stability of matter, Rev. Mod. Phys. 48:553-569 (1976).Google Scholar
  138. E. H. Lieb, The stability of matter: from atoms to stars, Bull. Am. Math. Soc. 22:1-49 (1990).Google Scholar
  139. E. H. Lieb and J. Lebowitz, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. Math. 9:316-398 (1972).Google Scholar
  140. E. H. Lieb and H. Narnhofer, The thermodynamic limit for jellium, J. Stat. Phys. 12:291-310 (1975). Erratum: J. Stat. Phys. 14:465 (1976).Google Scholar
  141. E. H. Lieb, M. Loss, and J. Solovej, Stability of matter in magnetic fields, Phys. Rev. Lett. 75:985-989 (1995).Google Scholar
  142. S. Lukyanov and A. Zamolodchikov, Exact expectation values of local fields in the quantum Sine-Gordon model, Nuclear Phys. B 493:571-587 (1997).Google Scholar
  143. A. C. Maags and N. W. Ashcroft, Electronic fluctuations and cohesion in metals, Phys. Rev. Lett. 59:113-116 (1987).Google Scholar
  144. G. Mack and A. Pordt, Convergent perturbation expansions in Euclidean quantum field theory, Commun. Math. Phys. 97:267-298 (1985).Google Scholar
  145. G. Mack and A. Pordt, Convergent weak coupling expansions for lattice field theories that look like perturbation series, Rev. Math. Phys. 1:47-87 (1989).Google Scholar
  146. N. Macris and P. A. Martin, Ionization equilibrium in the electron-proton gas, J. Stat. Phys. 60:619-637 (1990).Google Scholar
  147. P. A. Martin, Sum rules in charged fluids, Rev. Mod. Phys. 60:1075-1127 (1988).Google Scholar
  148. P. A. Martin, Lecture on Fefferman's proof of the atomic and molecular nature of matter, Acta Physica Polonica B 24:751-770 (1993).Google Scholar
  149. P. A. Martin, Atomic correlations and van der Waals forces, Helv. Phys. Acta 70:80-95 (1996).Google Scholar
  150. J. Mayer and G. Mayer, Statistical Mechanics, 2nd ed. (Wiley, 1977).Google Scholar
  151. J. E. Mayer, The theory of ionic solutions, J. Chem. Phys. 18:1426-1436 (1950).Google Scholar
  152. D. A. McQuarrie, Statistical Mechanics (Harper-Collins, New York, 1976).Google Scholar
  153. J. Meeron, Theory of potentials of average force and radial distribution functions in ionic solutions, J. Chem. Phys. 28:630-643 (1958).Google Scholar
  154. J. Meeron, Plasma Physics (McGraw-Hill, New York, 1961).Google Scholar
  155. A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient perturbations of a massless free field, Commun. Math. Phys. 183:55-84 (1997).Google Scholar
  156. C. W. Newman, Normal fluctuations and the FKG inequalities, Commun. Math. Phys. 74:119-128 (1980).Google Scholar
  157. C. W. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. Probab. 9:671-675 (1981).Google Scholar
  158. C. W. Newman and A. L. Wright, Associated random variables and martingale inequalities, Z. Wahrsch. verw. Gebiete 59:361-371 (1982).Google Scholar
  159. L. Onsager, Electrostatic interaction of molecules, J. Phys. Chem. 43:189-196 (1939).Google Scholar
  160. Y. M. Park, Lack of screening in the continuous dipole system, Commun. Math. Phys. 70:161-167 (1979).Google Scholar
  161. O. Penrose, Convergence of fugacity expansions for fluids and lattice gases, J. Math. Phys. 4:1312-1320 (1963).Google Scholar
  162. O. Penrose, Convergence of fugacity expansions for classical systems, in Statistical Mechanics, Foundations anal Applications, T. A. Bak, ed., I.U.P.A.P. Meeting, Copenhagen, 1966 (Benjamin Inc., New York, 1967), pp. 101-109.Google Scholar
  163. J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B 231:269 (1984).Google Scholar
  164. E. L. Pollock and J. P. Hansen, Statistical mechanics of dense ionized matter. II. equilibrium properties and melting transition of the crystallized one component plasma, Phys. Rev. A 8:3110-3122 (1973).Google Scholar
  165. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol IV. Analysis of Operators (Academic Press, New York, 1979).Google Scholar
  166. V. Rivasseau, From Perturbative to Constructive Renormalization, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1991).Google Scholar
  167. G. Roepstorff, Path Integral Approach to Quantum Physics (Springer, Berlin, 1994).Google Scholar
  168. D. Ruelle, Correlation functions of classical gases, Ann. Probab. 25:109-120 (1963).Google Scholar
  169. D. Ruelle, Statistical Mechanics (W. A. Benjamin Inc., London, 1969).Google Scholar
  170. A. J. F. Siegert, Partition functions as averages of functionals of Gaussian random functions, Physica 26:530-535 (1960).Google Scholar
  171. B. Simon, Functional Integration and Quantum Physics (Academic Press, New York, 1979).Google Scholar
  172. F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Vol. 14 of Advanced Series in Mathematical Physics (World Scientific, 1992).Google Scholar
  173. E. Speer, Mayer coefficients in two-dimensional Coulomb systems, J. Stat Phys. 42:895-920 (1986).Google Scholar
  174. G. Stell, Criticality and phase transitions in ionic fluids, J. Stat. Phys. 78:197-238 (1995).Google Scholar
  175. G. Stell, G. Patey and J. Høye, Dielectric constants of fluid models: Statistical mechanical theory and its quantitative implementation, Advances in Chemical Theory 48:183-328 (1981).Google Scholar
  176. W.-S. Yang, Debye screening for two-dimensional Coulomb systems at high temperatures, J. Stat. Phys. 49:1-32 (1987).Google Scholar
  177. S. Yeh, Y. Zhou and G. Stell, Phase separation of ionic fluids: an extended Ebeling-Grigo approach, J. Phys. Chem. 100:1415-1419 (1996).Google Scholar
  178. D. M. Zuckerman, M. E. Fisher and B. P. Lee, Statistical physics, plasmas, fluids and related interdisciplinary topics, Phys. Rev. E 56:6569-6580 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • David C. Brydges
    • 1
  • Ph. A. Martin
    • 2
  1. 1.Department of MathematicsUniversity of VirginiaCharlottesville
  2. 2.Institut de Physique Théorique, École Polytechnique Fédérale de LausanneLausaneSwitzerland

Personalised recommendations