Plant and Soil

, Volume 209, Issue 2, pp 225–232 | Cite as

The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China

  • Shirong Tang
  • B.-M. Wilke
  • Changyong Huang
Article

Abstract

Elsholtzia haichowensis Sun., Commelina communis Linn., and Rumex acetosa Linn. are the dominant species that vastly grow over the copper mining spoil heaps and copper-contaminated soil of the areas along the middle and lower streams of the Yangtze River. Each has its own ecological habits. Chemical analytical data show that these plants can accumulate copper to various extents, depending on the copper content of the supporting soils and plant species. The highest concentration copper was found in R. acetosa with the leaf copper concentration ranging from 340 to 1102 mg/kg and averaging 601 mg/kg (dry weight basis). C. communis also contained high copper concentration in its leaves ranging from 19 to 587 mg/kg and averaging 157 mg/kg. E. haichowensis has the lowest copper concentration in its leaves from 18 to 391 mg/kg and averaging 102 mg/kg. The copper content of the soils supporting all the species varies to a great extent from place to place. All these lines of evidence suggest that E. haichowensis, C. communis, and R. acetosa can serve as pioneer species for reclamation of copper mined land and can be used as model plants for investigation of plant tolerance mechanisms, and geochemical prospecting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker A J M 1981Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr 3(1–4), 643–654.CrossRefGoogle Scholar
  2. Baker A J M 1989Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.Google Scholar
  3. Baker A JM, Brooks R R, Pease A J and Malaisse F 1983Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Zaire. Plant Soil 73, 377–385.CrossRefGoogle Scholar
  4. Brooks R R 1977Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48, 541–544.CrossRefGoogle Scholar
  5. Brooks R R and Malaisse F 1985The heavy metal-tolerant flora of southcentral Africa. Balkema, Rotterdam.Google Scholar
  6. Brooks R R, Baker A J M, and Malaisse F 1992Copper Flowers. National Geog. Res. Expl. 8(3), 338–351.Google Scholar
  7. Brooks R R, Gregoire J, Madi L and Malaisse F 1982Phytogéochimie des gisements cupro-cobaltifères de L'anticlinal de Kasonta (Shaba, Zaire). Géo-Eco-Trop 6219–228.Google Scholar
  8. Brooks R R, Morrison R S, Reeves R D and Malaisse F 1978Copper and cobalt in Africa species of Aeolanthus Mart (Plectranthinae, Labitae). Plant Soil 50, 503–507.CrossRefGoogle Scholar
  9. Brooks R R, Naidu S D, Malaisse F and Lee J 1987The elemental content of metallophytes from the copper/cobalt deposits of Central Africa. Bulletin de la Sociétié Royale de Botanique de Belgique 119, 179–191.Google Scholar
  10. Brooks R R, Reeves R D, Morrison R S and Malaisse F 1980Hyperaccumulation of copper and cobalt-a review. Bull. Soc. Royale de Botanique de Belgique 113, 166–172.Google Scholar
  11. De Plaen G, Malaisse F and Brooks R R 1982The copper flowers of Central Africa and their significance for achaeology and mineral prospecting. Endeavour 6, 72–77.CrossRefGoogle Scholar
  12. Duvigneaud P and Denaeyer-De Smet, S Cuivre et 1963Vegetation au Katanga. Bull. Soc. Royale de Botanique de Belgique 96, 93–231.Google Scholar
  13. Homer F A, Morrison R S, Brooks R R, Clements J and Reeves R D 1991Comparative study of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil 138, 195–205.CrossRefGoogle Scholar
  14. Hsieh and Hsu 1954On Elsholtzia haichowensis: an indicator plant for copper. Bull. Geol. Soc. China, 32(4), 360–367(in Chinese).Google Scholar
  15. Kelepertsis A E and Andrulakis J 1983Geobotany biogeochemistry for mineral exploration of sulphide deposits in Northern Greece-heavy metal accumulation by Rumex acetosella L. and Minuarita verna (L.) Hiern. J. Geo. Explo. 18, 267–274.CrossRefGoogle Scholar
  16. Kong L S, Wang M L, Hu Y H, Miao Y G and Kong F Z 1986Characteristics of phytogeochemistry in copper mine area of Hongtou Shan, Liaoning province. Acta Botanica Sinica 28(3), 311–322.Google Scholar
  17. Kuo Tsung-Shan 1957The skarn type of metamorphic copper ore deposits in lower Yangtze. Scientia Sinica 6 (3), 1105–1116.Google Scholar
  18. Malaisse F and Gregoire J 1978Contribution a la phytogéochimie de la Mine de L'Etoile (Shaba, Zaire). Bull. Soc. Royale Botanique de Belg. 111, 252–260.Google Scholar
  19. Malaisse F, Brooks R R and Baker A J M 1994Diversity of vegetation communities in relation to soil heavy metal content at the Shinkolobwe copper/cobalt/uranium mineralization, upper Shaba, Zaire. Belg. J. Bot. 127(1), 3–16.Google Scholar
  20. Malaisse F, Gregoire J, Morrison R S, Brooks R R, and Reeves R D 1979Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaire. Oikos 33, 472–478.Google Scholar
  21. Nicolls OW, Provan DMJ, Cole M Mand Tooms J S 1965Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District, Australia. Trans. Inst. Min. Metall. 74, 695–799.Google Scholar
  22. Page A L, Miller R H and Keeney D R (eds.) 1982 Chemical and microbiological properties. In Page A.L., Miller R. H., and Keeney D.R. (eds.) Methods of soil analysis, part 2, Second edition. Madison, Wisconsin USA: Soil Science Society of America, Inc., 571–572.Google Scholar
  23. Reeves R D, Baker A J M and Brooks R R 1995Abnormal accumulation of trace metals by plants. Min Envir. Management 4–8.Google Scholar
  24. Reilly C and Stone J 1967Copper tolerance in Becium homblei. Nature 230, 403.CrossRefGoogle Scholar
  25. Tiagi Y D and Aery N C 1986Biogeochemical studies at the Khetri copper deposits of Rajasthan, India. Journal of Geochemical Exploration, 26, 267–274.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Shirong Tang
    • 1
  • B.-M. Wilke
    • 2
  • Changyong Huang
    • 3
  1. 1.Institute of Nuclear-Agricultural SciencesZhejiang University, Huajachi, HangzhouZhejiangP.R. China FAX No
  2. 2.Institut Fur LandschaftsbauTechnische Universitat BerlinBerlin
  3. 3.Department of Soil SciencesZhejiang University, Huajachi, HangzhouZhejiangP.R. China

Personalised recommendations