Journal of Statistical Physics

, Volume 95, Issue 3–4, pp 693–717 | Cite as

Analyticity in Hubbard Models

  • Daniel Ueltschi


The Hubbard model describes a lattice system of quantum particles with local (on-site) interactions. Its free energy is analytic when βt is small, or βt2/U is small; here, β is the inverse temperature, U the on-site repulsion, and t the hopping coefficient. For more general models with Hamiltonian H=V+T where V involves local terms only, the free energy is analytic when βT‖ is small, irrespective of V. There exists a unique Gibbs state showing exponential decay of spatial correlations. These properties are rigorously established in this paper.

Hubbard model local interactions analyticity of free energy uniqueness of Gibbs states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BKU]
    C. Borgs, R. Kotecký, and D. Ueltschi, Incompressible phase in lattice systems of interacting bosons, unpublished, available at (1997).Google Scholar
  2. [CSO]
    K. A. Chao, J. Spalek, and A. L. Oleś, Canonical perturbation expansion of the Hubbard model, Phys. Rev. B 18:3453–3464 (1978).Google Scholar
  3. [DFF]
    N. Datta, R. Fernaádez, and J. Fröhlich, Effective Hamiltonians and phase diagrams for tight-binding models, preprint, math-ph/9809007 (1998).Google Scholar
  4. [DFFR]
    N. Datta, R. Fernández, J. Fröhlich, and L. Rey-Bellet, Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy, Helv. Phys. Acta 69:752–820 (1996).Google Scholar
  5. [Dob]
    R. L. Dobrushin, Estimates of semiinvariants for the Ising model at low temperatures, preprint ESI 125, available at (1994).Google Scholar
  6. [DLS]
    F.J. Dyson, E. H. Lieb, and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys. 18:335–383 (1978).Google Scholar
  7. [FWGF]
    M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Boson localization and the superfluid-insulator transition, Phys. Rev. B 40:546–570 (1989).Google Scholar
  8. [GM]
    Ch. Gruber and N. Macris, The Falicov-Kimball model: A review of exact results and extensions, Helv. Phys. Acta 69:850–907 (1996).Google Scholar
  9. [Hua]
    K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, 1987).Google Scholar
  10. [Hub]
    J. Hubbard, Electron correlations in narrow energy bands, Proc. Roy. Soc. London A 276:238–257 (1963); II. The degenerate case 277:237–259 (1964); III. An improved solution 281:401–419 (1964).Google Scholar
  11. [KL]
    T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long range order, Physica A 138:320–358 (1986).Google Scholar
  12. [KS]
    D. J. Klein and W. A. Seitz, Perturbation expansion of the linear Hubbard model, Phys. Rev. B 8:2236–2247 (1973).Google Scholar
  13. [KP]
    R. Kotecky_ and D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103:491–498 (1986).Google Scholar
  14. [KU]
    R. Kotecký and D. Ueltschi, Effective interactions due to quantum fluctuations, preprint, available at;/instituts/ipt/publications.html, to appear in Commun. Math. Phys. (1999).Google Scholar
  15. [LM]
    J. L. Lebowitz and N. Macris, Lang range order in the Falicov-Kimball model: Extension of Kennedy-Lieb theorem, Rev. Math. Phys. 6:927–946 (1994).Google Scholar
  16. [Lieb]
    E. H. Lieb, The Hubbard model: Some rigorous results and open problems, in Advances in Dynamical Systems and Quantum Physics (World Scientific, 1993).Google Scholar
  17. [MGY]
    A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t/U expansion for the Hubbard model, Phys. Rev. B 37:9753–9756 (1988).Google Scholar
  18. [MM]
    A. Messager and S. Miracle-Solè, Low temperature states in the Falicov-Kimball model, Rev. Math. Phys. 8:271–299 (1996).Google Scholar
  19. [PY]
    Y. M. Park and H. J. Yoo, Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems, J. Stat. Phys. 80:223–271 (1995).Google Scholar
  20. [PO]
    O. Penrose and L. Onsager, Bose-Einstein condensation and liquid Helium, Phys. Rev. 104:576–584 (1956).Google Scholar
  21. [Yang]
    C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors, Rev. Mod. Phys. 34:694–704 (1962).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Daniel Ueltschi
    • 1
  1. 1.Institut de Physique Théorique, École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations