Journal of Statistical Physics

, Volume 94, Issue 5–6, pp 955–1025 | Cite as

Liquid–Vapor Phase Transitions for Systems with Finite-Range Interactions

  • J. L. Lebowitz
  • A. Mazel
  • E. Presutti


We consider particles in ℝ d , d≥2, interacting via attractive pair and repulsive four-body potentials of the Kac type. Perturbing about mean-field theory, valid when the interaction range becomes infinite, we prove rigorously the existence of a liquid–gas phase transition when the interaction range is finite but long compared to the interparticle spacing for a range of temperature.

continuum particle system liquid–gas phase transition mean-field theory Pirogov–Sinai theory cluster expansion Dobrushin uniqueness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bax]
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London/New York, 1982).Google Scholar
  2. [BKL]
    J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov–Sinai theory, Comm. Math. Phys. 101:501–538 (1985).Google Scholar
  3. [BP]
    T. Bodineau and E. Presutti, Phase diagram of Ising systems with additional long range forces, Comm. Math. Phys. 189:287–298, (1996).Google Scholar
  4. [BZ]
    A. Bovier and M. Zahradnik, The low temperature phase of Kac–Ising models, J. Stat. Phys., to appear.Google Scholar
  5. [CCK]
    J. T. Chayes, L. Chayes, and R. Kotecky, The analysis of the Widom–Rowlinson model by stochastic geometric methods, Comm. Math. Phys. 172:551–569 (1995).Google Scholar
  6. [COPP]
    M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti, Existence and unique ness of DLR measures for unbounded spin systems, Z. Wahr. verv. Geb. 41:313–334 (1978).Google Scholar
  7. [CP]
    M. Cassandro and E. Presutti, Phase transitions in Ising systems with long but finite range interactions, Markov Processes and Related Fields 2:241–262 (1996).Google Scholar
  8. [D1]
    R. L. Dobrushin, Existence of phase transition in two-and three-dimensional Ising models, Th. Prob. Appl. 10:193–313 (1965).Google Scholar
  9. [D2]
    R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Th. Prob. Appl. 15:456–458 (1970).Google Scholar
  10. [D3]
    R. L. Dobrushin, Estimates of semi-invariants for the Ising model at low tem peratures, topics in statistical and theoretical physics, Amer. Math. Soc. Transl. (2) 177:59–81 (1996).Google Scholar
  11. [DS]
    E. I. Dinaburg and Ya. G. Sinai, Contour models with interaction and their applications, Sel. Math. Sov. 7:291–315 (1988).Google Scholar
  12. [DZ]
    R. L. Dobrushin and M. Zahradnik, Phase diagrams for continuous spin models. Extension of Pirogov–Sinai theory, in Mathematical Problems of Statistical Mechanics and Dynamics, R. L. Dobrushin, ed. (Kluwer Academic Publishers, Dordrecht, Boston, 1986), pp. 1–123.Google Scholar
  13. [F]
    M. V. Fedoryuk, Asymptotic: Integrals and Series (Nauka, Moscow, 1987).Google Scholar
  14. [FF]
    B. U. Felderhof and M. E. Fisher, Phase transitions in one-dimensional cluster-interaction fluids. IA. Thermodynamics, IB. Critical behavior, II. Simple logarithmic model, Annals of Phys. 58:176–216, 217–267, 268–280 (1970).Google Scholar
  15. [GH]
    H.-O. Georgii and Haggstrom, Phase transitions in continuum Potts models, Comm. Math. Phys. 181:507–528 (1996).Google Scholar
  16. [G]
    R. B. Griffiths, Peierls' proof of spontaneous magnetization in a two-dimensional Ising ferromagnet, Phys. Rev. A 136:437–439 (1964).Google Scholar
  17. [J]
    K. Johansson, On separation of phases in one-dimensional gases, Comm. Math. Phys. 169:521–561 (1995).Google Scholar
  18. [vK]
    N. G. van Kampen, Condensation of a classical gas with long-range attraction, Phys. Rev. A 135:362 (1964).Google Scholar
  19. [KP]
    R. Kotecky and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103:491–498 (1986).Google Scholar
  20. [KUH]
    M. Kac, G. Uhlenbeck, and P. C. Hemmer, On the Van der Waals theory of vapor–liquid equilibrium, J. Mat. Phys. 4:216–228, 229–247 (1963); 5:60–74 (1964).Google Scholar
  21. [LL]
    J. L. Lebowitz and E. H. Lieb, Phase transition in a continuum classical system with finite interactions, Phys. Lett. A 39:98–100 (1972).Google Scholar
  22. [LMPI]
    J. L. Lebowitz, A. E. Mazel, and E. Presutti, Rigorous proof of a liquid–vapor phase transition in a continuum particle system, Phys. Rev. Lett. 80:4701–4704 (1998).Google Scholar
  23. [LMPII]
    J. L. Lebowitz, A. E. Mazel, and E. Presutti, in preparation.Google Scholar
  24. [LP]
    J. L. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals–Maxwell theory of the liquid–vapor transition, J. Mat. Phys. 7:98–113 (1966).Google Scholar
  25. [MS]
    A. E. Mazel and Yu. M Suhov, Ground states of boson quantum lattice model, Amer. Math. Soc. Transl. (2) 171:185–226 (1996).Google Scholar
  26. [O]
    L. Onsager, Crystal statistics I. A two-dimensional model with an order–disorder transition, Phys. Rev. 65:117–149 (1944).Google Scholar
  27. [P]
    R. Peierls, On Ising's model of ferromagnetism, Proc. Camb. Phil. Soc. 32:477–481 (1936).Google Scholar
  28. [Pr]
    E. Presutti, Notes on phase transition in the continuum, Lectures at IHP, Paris, June–July 1998, preprint.Google Scholar
  29. [PS]
    S. A. Pirogov and Ya. G Sinai, Phase diagrams of classical lattice systems, Theor. Math. Phys. 25:358–369, 1185–1192 (1975).Google Scholar
  30. [R1]
    D. Ruelle, Existence of a phase transition in a continuous classical system, Phys. Rev. Lett. 27:1040–1041 (1971).Google Scholar
  31. [R2]
    D. Ruelle, Probability estimates for continuous spin systems, Comm. Math. Phys. 50:189–194 (1976).Google Scholar
  32. [S]
    Ya. G. Sinai, Theory of Phase Transitions (Academia Kiado and Pergamon Press, Budapest, London, 1982).Google Scholar
  33. [Se]
    E. Seiler, Gauge theories as a problem of constructive quantum field theory and statistical mechanics, Lect. Notes in Physics, Vol. 159 (Springer-Verlag, Berlin, 1982).Google Scholar
  34. [WR]
    B. Widom and J. S. Rowlinson, New model for the study of liquid–vapor phase transitions, J. Chem. Phys. 52:1670–1684 (1970).Google Scholar
  35. [Z]
    M. Zahradnik, An alternate version of Pirogov–Sinai theory, Comm. Math. Phys. 93:559–581 (1984).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • J. L. Lebowitz
    • 1
  • A. Mazel
    • 1
    • 2
  • E. Presutti
    • 3
  1. 1.Departments of Mathematics and PhysicsRutgers UniversityNew Brunswick
  2. 2.International Institute of Earthquake Prediction Theory and Theoretical GeophysicsMoscowRussia
  3. 3.Dipartimento di MatematicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations