Journal of Statistical Physics

, Volume 96, Issue 1–2, pp 225–269 | Cite as

Entropy Production: From Open Volume-Preserving to Dissipative Systems

  • T. Gilbert
  • J. R. Dorfman

Abstract

We generalize Gaspard's method for computing the ε-entropy production rate in Hamiltonian systems to dissipative systems with attractors considered earlier by Tél, Vollmer, and Breymann. This approach leads to a natural definition of a coarse-grained Gibbs entropy which is extensive, and which can be expressed in terms of the SRB measures and volumes of the coarse-graining sets which cover the attractor. One can also study the entropy and entropy production as functions of the degree of resolution of the coarse-graining process, and examine the limit as the coarse-graining size approaches zero. We show that this definition of the Gibbs entropy leads to a positive rate of irreversible entropy production for reversible dissipative systems. We apply the method to the case of a two-dimensional map, based upon a model considered by Vollmer, Tél, and Breymann, that is a deterministic version of a biased-random walk. We treat both volume-preserving and dissipative versions of the basic map, and make a comparison between the two cases. We discuss the ε-entropy production rate as a function of the size of the coarse-graining cells for these biased-random walks and, for an open system with flux boundary conditions, show regions of exponential growth and decay of the rate of entropy production as the size of the cells decreases. This work describes in some detail the relation between the results of Gaspard, those of of Tél, Vollmer, and Breymann, and those of Ruelle, on entropy production in various systems described by Anosov or Anosov-like maps.

entropy production thermostated systems nonequilibrium stationary states SRB measure deterministic diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. G. Hoover, Molecular Dynamics (Springer-Verlag, Heidelberg, 1986).Google Scholar
  2. 2.
    D. J. Evans and G. P. Morriss, Statistical Mechanics of Non-Equilibrium Fluids (Academic Press, London, 1990).Google Scholar
  3. 3.
    N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Steady state electric conductivity in the periodic Lorentz gas, Comm. Math. Phys. 154:569 (1993).Google Scholar
  4. 4.
    D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Stat. Phys. 85:1 (1996).Google Scholar
  5. 5.
    W. Breymann, T. Tél, and J. Vollmer, Entropy production for open dynamical systems, Phys. Rev. Lett. 77:2945 (1996).Google Scholar
  6. 6.
    C. P. Dettmann and G. P. Morriss, Hamiltonian formulation of the Gaussian isokinetic thermostat, Phys. Rev. E 54:2495 (1996).Google Scholar
  7. 7.
    B. L. Holian, W. G. Hoover, and H. A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics, Phys. Rev. Lett. 59:10 (1987).Google Scholar
  8. 8.
    W. G. Hoover, Reversible mechanics and time's arrow, Phys. Rev. A 37:252 (1988).Google Scholar
  9. 9.
    H. A. Posch and W. G. Hoover, Lyapunov instability of dense Lennard-Jones fluids, Phys. Rev. A 38:473 (1988).Google Scholar
  10. 10.
    D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents, Phys. Rev. A 42:5990 (1990).Google Scholar
  11. 11.
    D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in shearing steady states, Phys. Rev. Lett. 71:2401 (1993).Google Scholar
  12. 12.
    A. Baranyai, D. J. Evans, and E. G. D. Cohen, Field dependent conductivity and diffusion in a two-dimensional Lorentz gas, J. Stat. Phys. 70:1085 (1993).Google Scholar
  13. 13.
    G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, J. Stat. Phys. 84:899 (1995); G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states, Phys. Rev. Lett. 74:2694 (1995).Google Scholar
  14. 14.
    L. Rondoni, and G. P. Morriss, Stationary nonequilibrium ensembles for thermostated systems, Phys. Rev. E 53:2143 (1996).Google Scholar
  15. 15.
    J. R. Dorfman and H. van Beijeren, Dynamical systems theory and transport coefficients: A survey with applications to Lorentz gases, Physica A 240:12 (1997).Google Scholar
  16. 16.
    J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999).Google Scholar
  17. 17.
    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962), reprinted in (Dover Publications, New York, 1984).Google Scholar
  18. 18.
    T. Tél, J. Vollmer, and W. Breymann, Transient chaos: the origin of transport in driven systems, Europhys. Lett. 35:659 (1996); J. Vollmer, T. Tél, and W. Breymann, Equivalence of irreversible entropy production in driven systems: an elementary chaotic map approach, Phys. Rev. Lett. 79:2759 (1997).Google Scholar
  19. 19.
    P. Gaspard, Entropy production in open, volume preserving systems, J. Stat. Phys. 89:1215 (1997). P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, Cambridge, 1998).Google Scholar
  20. 20.
    S. Tasaki and P. Gaspard, Fick's law and fractality of nonequilibrium stationary states in a reversible multibaker map, J. Stat. Phys. 81:935 (1995).Google Scholar
  21. 21.
    R. C. Tolman, The Principles of Statistical Mechanics (Oxford, London, 1938), reprinted in (Dover Publications, New York, 1979).Google Scholar
  22. 22.
    P. and T. Ehrenfest, The Conceptual Foundations of the Statistical Approach in Mechanics (Cornell University Press, Ithaca, 1959).Google Scholar
  23. 23.
    J. Vollmer, T. Tél, and W. Breymann, Entropy balance in the presence of drift and diffusive currents: an elementary map approach, Phys. Rev. E 58:1672 (1998); J. Vollmer, T. Tél, and W. Breymann, Entropy Balance, Time Reversibility, and Mass Transport in Dynamical Systems, Chaos 8:396 (1998).Google Scholar
  24. 24.
    Ya. G. Sinaï, Topics in Ergodic Theory, Princeton Mathematical Series, 44 (Princeton University Press, 1994, Princeton N.J.).Google Scholar
  25. 25.
    S. Tasaki, T. Gilbert, and J. R. Dorfman, An analytic construction of the SRB measures for Baker-type maps, Chaos 8:424 (1998).Google Scholar
  26. 26.
    T. Gilbert, C. Ferguson, and J. R. Dorfman, Field driven thermostated system: A non-linear multi-baker map, Phys. Rev. E 59:364 (1999).Google Scholar
  27. 27.
    G. P. Morriss, C. P. Dettmann, and L. Rondoni, Recent results for the thermostated Lorentz gas, Physica A 240:84 (1997).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • T. Gilbert
    • 1
  • J. R. Dorfman
    • 1
  1. 1.Department of Physics and Institute for Physical Science and TechnologyUniversity of MarylandCollege Park

Personalised recommendations