Journal of Statistical Physics

, Volume 94, Issue 5–6, pp 779–804 | Cite as

Boundary Conditions for Scalar Conservation Laws from a Kinetic Point of View

  • A. Nouri
  • A. Omrane
  • J. P. Vila
Article

Abstract

Boundary conditions for multidimensional scalar conservation laws are obtained in the context of hydrodynamic limits from a kinetic point of view. The initial boundary value kinetic problem is well posed since inward and outward characteristics of the domain can be distinguished. The convergence of the first momentum of the distribution function to an entropy solution of the conservation law is established. Boundary conditions are obtained. The equivalence with the Bardos, Leroux, and Nedelec conditions is studied.

hydrodynamic limits multidimensional scalar conservation laws kinetic approach Cauchy problem and boundary conditions BV estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. Bardos, A. Y. Leroux, and J. C. Nedelec, First order quasi linear equations with boundary conditions, Comm. PDE 4(9):1017–1034 (1979).Google Scholar
  2. 2.
    Y. Brenier, Résolution d'équations d'évolution quasilinéaires en N dimensions d'espace è l'aide d'équations en dimension N+1 d'espace, JDE, 375–390 (1983).Google Scholar
  3. 3.
    J. F. Bourgeat, P. Le Tallec, B. Perthame, and Y. Qiu, Coupling Boltzmann and Euler equations without overlapping, Contemp. Math. 157:377–398 (1994).Google Scholar
  4. 4.
    F. Dubois and P. Le Floch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, JDE 4(9):93–122 (1988).Google Scholar
  5. 5.
    T. Gallouet and J. M. Masella, Un schéma de Godounov approché, C.R.A.S. Sér. I 323:77–84 (1996).Google Scholar
  6. 6.
    Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasi linear equations, Duke Math. J. 50:505–515 (1983).Google Scholar
  7. 7.
    F. Golse, Boundary and interface layers for kinetic models, Lecture Notes, GDR SPARCH, Oléron (1997).Google Scholar
  8. 8.
    F. Golse, Shock profiles for the Perthame-Tadmore kinetic model, Technical report.Google Scholar
  9. 9.
    S. N. Kruskov, First order quasilinear equations with several independent variables, Math. Sbornik. 81(123):228–255; Math. USSR Sbornik 10:217–243 (1970).Google Scholar
  10. 10.
    F. A. Howes, Multidimensional initial-boundary value problems with strong linearities, Arch. Rat. Mech. Anal. 91(2):153–168 (1986).Google Scholar
  11. 11.
    P. L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7(1):169–191 (1994).Google Scholar
  12. 12.
    A. Omrane and J. P. Vila, On two kinetic approaches for scalar conservation laws, Preprint (1995).Google Scholar
  13. 13.
    B. Perthame and E. Tadmore, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136:501–517 (1991).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. Nouri
    • 1
  • A. Omrane
    • 2
  • J. P. Vila
    • 3
  1. 1.UMR 5585, INSA LyonVilleurbanne CedexFrance
  2. 2.Université des Antilles et de la GuyanePointe à PitreGuadeloupe
  3. 3.Institut National des Sciences Appliquées de Toulouse (INSAT), Route de NarbonneToulouse Cedex

Personalised recommendations