Advertisement

Journal of Materials Science

, Volume 34, Issue 7, pp 1691–1697 | Cite as

Evolution of the microstructure of disperse Zinc-oxide during tribophysical activation

  • M. G. Kakazey
  • V. A. Melnikova
  • T. Sreckovic
  • T. V. Tomila
  • M. M. Ristic
Article

Abstract

The process of macro- and microstructural transformations of zinc-oxide powders, which were tribophysically activated by grinding in a vibro-mill was investigated using methods of transmission electron microscopy, infrared spectroscopy and X-ray. It is shown that tribophysical activation contributes to a gradual modification of the fine defect structure of zinc-oxide powders. In the starting stage agglomerates and bigger, longer particles are destroyed first of all. As a result of the formation of both volume and surface defects and changes of the character of interparticles interactions the plate-like polycrystal particles are created. They actually present sets of coherent scattering region.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ye. G. Awakumov, “Mechanical Methods of the Activation of Chemical Processes” (Nauka, Novosibirsk, 1986, in Russian) p. 305.Google Scholar
  2. 2.
    G. Heinike, “Tribochemistry” (Mir, Moskva, 1987, in Russian), p. 582.Google Scholar
  3. 3.
    T. Sreckovic, N. G. Kakazey and T. B. Novakovic, Sci. Sintering 27 (1995) 183.Google Scholar
  4. 4.
    N. G. Kakazey, T. V. Sreckovic and M. M. Ristic, J. Mater. Sci. 32 (1997) 4619.Google Scholar
  5. 5.
    C. J. Serna and J.E. Iglesias, J. Phys. C 20 (1987) 472.Google Scholar
  6. 6.
    M. Andres-Verges and C. J. Serna, J. Mater. Sci. Lett. 20 (1988) 970.Google Scholar
  7. 7.
    M. Andres-Verges, A. Mifsud and C. J. Serna, ibid. 8 (1989) 115.Google Scholar
  8. 8.
    M. Andres-Verges and M. Martinez-Gallego, J. Mater. Sci. 27 (1992) 1756.Google Scholar
  9. 9.
    S. Hayashi, N. Nakamori and H. Kanamori, J. Phys. Soc. Japan 46 (1979) 176.Google Scholar
  10. 10.
    P. Cipe and R. Ervard, Phys. Rev. B 14 (1971) 1715.Google Scholar
  11. 11.
    L. Genzel and T. P. Martin, Phys. Stat. Sol. 51b (1972) 91.Google Scholar
  12. 12.
    Idem. Surface Sci. 34 (1973) 33.Google Scholar
  13. 13.
    E. C. Heltemes and H. L. Swinney, J. Appl. Phys. 38 (1967) 2387.Google Scholar
  14. 14.
    C. A. Arguello, D. L. Rousseau and S. R. S. Porto, Phys. Rev. 181 (1969) 1351.Google Scholar
  15. 15.
    S. S. Gorelik and L. N. Rastorguev, “X-ray and Electron Diffraction Analysis of Metals” (Gostekhizdat, Moscow, 1963, in Russian).Google Scholar
  16. 16.
    F. Heiland, G. Mollaro and E. Stockmann, in "Solid State Physics,”"Vol. 8, edited by F. Seitz and N. Y. Turnbull (Academic Press, London, 1959) p. 191.Google Scholar
  17. 17.
    G. Williamson and R. Smallman, Phil. Mag. 1 (1956) 54.Google Scholar
  18. 18.
    N. G. Kakazey, D.Sc. Dissertation Abstract, Riga, 1991 (in Russian).Google Scholar
  19. 19.
    A. D. Zimon and E. L. Andrianov, “Autohesia Loose Materials” (Metallurgiya, Moscow, 1978, in Russian) p. 288.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. G. Kakazey
    • 1
  • V. A. Melnikova
    • 1
  • T. Sreckovic
    • 2
  • T. V. Tomila
    • 1
  • M. M. Ristic
    • 2
  1. 1.Institute for the Problems of Material Science of the National Academy of Sciences of the Ukraine,Kyiv,Ukraine
  2. 2.Joint Laboratory for Advanced Materials of the Serbian Academy of Sciences and Art,Belgrade,Yugoslavia

Personalised recommendations