Journal of Materials Science

, Volume 34, Issue 8, pp 1767–1774

Trimethylsilylation analysis of the silicate structure of fluoro-alumino-silicate glasses and the structural role of fluorine

  • R. Hill
  • D. Wood
  • M. Thomas


Trimethylsilylation (TMS) reactions have been carried out on acid degradable fluoro-alumino-silicate glasses containing a basic oxide. The siloxanes produced by the TMS reactions were analysed in order to gain information about the silicate structure of the glass. The results indicate a non-random arrangement of SiO4 and AlO4 tetrahedra in the glasses studied. No fluorinated derivatives of siloxanes were found, indicating that fluorine atoms are not bonded to the silicon atoms of the glass network. It is thought that fluorine atoms are instead bonded to the aluminium atoms present. The bonding of fluorine to aluminium and not to silicon atoms explains the prevention of fluorine loss as silicon tetrafluoride (SiF4) from melts containing both aluminium and a basic oxide, and in addition explains the reduction in the glass transition temperature behaviour found on incorporating fluorine into alumino-silicate glasses.

The results suggest that the environmental problem of silicon tetrafluoride loss from fluoro-silicate glass melts and its subsequent hydrolysis to hydrofluoric acid and silica can be avoided by including a basic oxide in the composition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Weyl, in "Fluorine Chemistry Vol 1" ed. J. H. Simmons (Academic Press, New York, 1950) pp. 553–574.Google Scholar
  2. 2.
    P. W. McMillan, "Glass-Ceramics" (Academic Press, New York, 1979).Google Scholar
  3. 3.
    Q. A. Juma and J. M. Parker, in "Advances in Ceramics Vol 4" ed. J. H. Simmonsq, D. R. Uhlmann and G. H. Beall (American Ceramic Society, 1982) pp. 218–323.Google Scholar
  4. 4.
    J. W. Flemming and D. L. Wood, Appl. Optics 22(19) (1983) 3102.CrossRefGoogle Scholar
  5. 5.
    P. Dumas, J. Corset, W. Calvalho, Y. Levy and Y. Neuman, J. Non Cryst. Solids 47(2) (1982) 239.CrossRefGoogle Scholar
  6. 6.
    C. Hirayama and F. E. Camp, Glass Technol 10(5) (1969) 123.Google Scholar
  7. 7.
    G. H. Beall, in "Advances in Nucleation and Crystallization in Glasses," ed. L. L. Hench and S. W. Frieman (American Ceramic Society, Westerville, 1971) pp. 251–260.Google Scholar
  8. 8.
    S. N. Hoda and G. H. Beall, in "Advances in Ceramics Vol 4" eds. J. H. Simmons, D. R. Uhlmann and G. H. Beall (American Ceramic Society, Westerville, 1982) pp. 287–300.Google Scholar
  9. 9.
    L. L. Hench, D. B. Spilman and J. W. Hench, "Fluoride Containing BioglassTM Compositions" US Patent 4,775,646 (1988).Google Scholar
  10. 10.
    W. Vogel, W. Hoeland, K. Naumann and J. Gummel, J. Non Cryst. Solids 80 (1986) 34.CrossRefGoogle Scholar
  11. 11.
    R. G. Hill, M. Patel and D. Wood, "Bioceramics" Vol 4 79–86 eds. W. Bonfield, G. W. Hastings and K. E. Tanner (Butterworth Heinemann Ltd London, 1991).Google Scholar
  12. 12.
    R. G. Hill and A. D. Wilson, Glass Technol. 29 (1988) 150.Google Scholar
  13. 13.
    R. G. Hill, C. Goat and D. Wood, J. Amer. Ceram. Soc. 75 (1992) 778.CrossRefGoogle Scholar
  14. 14.
    A. Dietzel, Naturwiss 29 (1941) 271.CrossRefGoogle Scholar
  15. 15.
    M. J. Buerger, Am Miner. 33 (1948) 744.Google Scholar
  16. 16.
    D. Kumar, R. G. Ward and D. J. Williams, Discuss. Faraday Soc. 32 (1961) 147.CrossRefGoogle Scholar
  17. 17.
    E. M. Rabinovich, Phys. Chem. Glasses 24 (1983) 54.Google Scholar
  18. 18.
    D. J. Wood and R. G. Hill, Biomaterials 12 (1991) 164.CrossRefGoogle Scholar
  19. 19.
    A. D. Wilson, S. Crisp, H. J. Prosser, B. G. Lewis and S. A. Merson, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 263.CrossRefGoogle Scholar
  20. 20.
    N. H. Ray, "Developments in Ionic Polymers" Chapter 3 eds. A. D. Wilson and H. J. Prosser (Applied Science, London, 1983).Google Scholar
  21. 21.
    F. D. Tamas, A. K. Sakar and D. M. Roy, J. Ind. Chem. (Veszprem) 5 (1977) 115.Google Scholar
  22. 22.
    D. Hobbel, J. Gotz, A. Vargha and W. Wieker, J. Non Cryst. Solids 69 (1984) 145.CrossRefGoogle Scholar
  23. 23.
    R. M. Smart and F. P. Glasser, J. Amer. Ceram. Soc. 57 (1974) 378.CrossRefGoogle Scholar
  24. 24.
    J. Gotz, D. Hobbel and W. Weiker, J. Non Cryst. Solids 20 (1974) 378.Google Scholar
  25. 25.
    R. Nakamura, A. Arikata, Y. Suginohara and T. Yanagese, Kyushu Daigaku Kogaku Shuho 50(5) (1977) 635.Google Scholar
  26. 26.
    J. Gotz and C. R. Masson, J. Ceram Soc. A (1971) 686.Google Scholar
  27. 27.
    R. Atwell, B. R. Currell, C. B. Cook, H. G. Midgeley and J. R. Parsonage, ACS Coating and Plastics Div. Preprints 37(1) (1977) 67.Google Scholar
  28. 28.
    K. E. Kolb and K. W. Hansen, J. Amer. Ceram. Soc. 48 (1965) 439.CrossRefGoogle Scholar
  29. 29.
    C. W. Lentz, J. Inorg. Chem. 3(4) (1964) 574.CrossRefGoogle Scholar
  30. 30.
    H. P. Calhoun, W. D. Jamieson and C. R. Masson, J.C.S. Dalton (1979) 454.Google Scholar
  31. 31.
    R. G. Hill and D. Wood, J. Clinical Materials 7 (1991) 301.CrossRefGoogle Scholar
  32. 32.
    F. D. Tamas, A. K. Sakar and D. M. Roy, Cem and Conc. Ass. London (1976) 55.Google Scholar
  33. 33.
    G. Eglinton, J. N. Firth and B. L. Welters, Chem. Geol 13 (1974) 125.CrossRefGoogle Scholar
  34. 34.
    R. K. Harris, NMR of the Periodic Table.Google Scholar
  35. 35.
    R. K. Harris and R. H. Newman, Org. Mag. Res. 9(7) (1977) 426.CrossRefGoogle Scholar
  36. 36.
    G. M. Singer and M. Tomozowa, Phys Chem. Glasses 30 (1989) 86.Google Scholar
  37. 37.
    W. Lowenstein, Am. Mineral. 39 (1954) 92.Google Scholar
  38. 38.
    S. C. Kohn, R. Dupree, M. G. Mortuza and C. M. B. Henderson, American Mineralogist 76 (1991) 309.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • R. Hill
    • 1
  • D. Wood
    • 2
  • M. Thomas
    • 3
  1. 1.Department of Material Science and Technology,University of Limerick,Limerick,Ireland
  2. 2.Department of Dental Biomaterials, Leeds Dental Institute,University of Leeds, Clarendon Way,LeedsUK
  3. 3.School of Chemical and Biological Sciences,University of Greenwich,LondonUK

Personalised recommendations