Journal of Materials Science

, Volume 34, Issue 6, pp 1313–1318 | Cite as

Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis

  • S.-L. Che
  • K. Takada
  • K. Takashima
  • O. Sakurai
  • K. Shinozaki
  • N. Mizutani


Dense spherical Ni particles were prepared from nitrate solution by spray pyrolysis in a H2–N2 atmosphere. Hollow NiO particles with rough surfaces were formed first at low temperature and then reduced to Ni by H2 above 300°C. Subsequent intraparticle sintering of the Ni crystallites gave rise to densification of Ni particles as the temperature was raised; most Ni particles became dense above the pyrolysis temperature of 1000°C. However, when a N2 atmosphere was used, hollow NiO particles were formed, which did not densify even at 1200°C due to the lack of sintering. The dense Ni particles obtained were of good crystallinity and good oxidation resistance, especially for those formed at higher pyrolysis temperatures and longer residence times.


Oxidation Polymer Atmosphere Nitrate Rough Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Saito, H. Chazono, H. Kishi and N. Yamaoka, Jpn. J. Appl. Phys. 30 (1991) 2307.Google Scholar
  2. 2.
    J. Yamamatsu and T. Nomura, Funtai Oyobi Funmatsu-yakin (J. Powder Powd. Metall. Soc. Jpn) 41(1993) 1042.Google Scholar
  3. 3.
    K. Otsuka, Y. Yamamoto and A. Yoshizawa, Nippon Kagaku Kaishi (1984) 869.Google Scholar
  4. 4.
    F. Miyoshino, K. Sano, K. Takada and F. Makuta, in Proceedings of the Ninth International Microelectronics Conference (IMC), Omiya, April 1996, p. 46–9.Google Scholar
  5. 5.
    G. L. Messing, S.-C. Zhang and G. V. Jayanthi, J. Amer. Ceram. Soc. 76 (1993) 2707.Google Scholar
  6. 6.
    S.-L. Che, O. Sakurai, K. Shinozaki and N. Mizutani, J. Aerosol Sci. 29 (1998) in press.Google Scholar
  7. 7.
    T. C. Pluym, S. M. Lyons, Q. H. Powell, A. S. Gurav, T. T. Kodas, L. M. Wang and H. D. Glicksman, Mater. Res. Bull. 28 (1993) 369.Google Scholar
  8. 8.
    K. Nagashima, M. Wada and A. Kato, J. Mater. Res. 5 (1990) 2828.Google Scholar
  9. 9.
    S.-L. Che, O. Sakurai, K. Shinozaki and N. Mizutani, J. Ceram. Soc. Jpn 104 (1996) 38.Google Scholar
  10. 10.
    S.-L. Che, O. Sakurai, H. Funakubo, K. Shinozaki and N. Mizutani, J. Mater. Res. 12 (1997) 392.Google Scholar
  11. 11.
    S. Stopic, I. Ilic and P. Uskokovic, Int. J. Powder Metall. 32 (1996) 59.Google Scholar
  12. 12.
    S.-L. Che, O. Sakurai, A. Saiki, H. Funakubo, K. Shinozaki, N. Mizutani and K. Terayama, J. Ceram. Soc. Jpn 105 (1997) 299.Google Scholar
  13. 13.
    A. M. Gadalla and H.-H. Yu, J. Thermal Anal. 37 (1991) 3119.Google Scholar
  14. 14.
    M. I. Alymov, E. I. Maltina and Y. N. Stepanov, Nanostructured Mater. 4 (1994) 737.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S.-L. Che
  • K. Takada
  • K. Takashima
  • O. Sakurai
  • K. Shinozaki
  • N. Mizutani

There are no affiliations available

Personalised recommendations