Journal of Statistical Physics

, Volume 95, Issue 1–2, pp 273–286

Dynamical Localization II with an Application to the Almost Mathieu Operator

  • François Germinet


Several recent works have established dynamical localization for Schrödinger operators, starting from control on the localization length of their eigenfunctions, in terms of their centers of localization. We provide an alternative way to obtain dynamical localization, without resorting to such a strong condition on the exponential decay of the eigenfunctions. Furthermore, we illustrate our purpose with the almost Mathieu operator, Hθ, λ, ω=−Δ+λ cos(2π(θ+)), λ≥15 and ω with good Diophantine properties. More precisely, for almost all θ, for all q>0, and for all functions ψ∈ℓ2(\(\mathbb{Z}\)) of compact support, we show that\(\mathop {\sup }\limits_t \left\langle {e^{ - itH_{\theta ,\lambda ,\omega } } \psi ,\left| X \right|^q e^{ - itH_{\theta ,\lambda ,\omega } } \psi } \right\rangle < C\psi\)The proof applies equally well to discrete and continuous random Hamiltonians. In all cases, it uses as input a repulsion principle of singular boxes, supplied in the random case by the multi-scale analysis.

dynamical localization random Schrödinger operator almost Mathieu model multiscale analysis uniform exponential localization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aizenman, Localization at weak disorder: some elementary bounds, Rev. Math. Phys. 6:1163–1182 (1994).Google Scholar
  2. 2.
    J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. J. 50:3695–3791 (1983).Google Scholar
  3. 3.
    J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35:5373–5451 (1994).Google Scholar
  4. 4.
    R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operator (Birkhäuser, 1990).Google Scholar
  5. 5.
    H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators (Springer-Verlag, 1987).Google Scholar
  6. 6.
    S. De Bièvre and G. Forni, Transport properties of kicked and quasiperiodic Hamiltonians, J. Stat. Physics 90:1201–1223 (1998).Google Scholar
  7. 7.
    R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69:153–200 (1996).Google Scholar
  8. 8.
    A. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124:285–299 (1989).Google Scholar
  9. 9.
    J. Fröhlich and T. Spencer, Absence of diffusion with Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88:151–184 (1983).Google Scholar
  10. 10.
    J. Fröhlich, T. Spencer, and P. Wittner, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Commun. Math. Phys. 132:5–25 (1990).Google Scholar
  11. 11.
    F. Germinet, Localisation dynamique pour des opárateurs de Schrödinger aléatoires ou quasi-périodiques, PHD Thesis, Paris VII (1998).Google Scholar
  12. 12.
    F. Germinet and S. De Bièvre, Dynamical localization for discrete and continuous random Schrödinger operators, Commun. Math. Phys. 194:323–341 (1998).Google Scholar
  13. 13.
    A. Y. Gordon, S. Jitomirskaya, Y. Last, and B. Simon, Duality and singular continuous spectrum in the almost Mathieu equation, Acta. Math. 178:169–183 (1997).Google Scholar
  14. 14.
    S. Jitomirskaya, Anderson localization for the almost Mathieu equation: A non pertubative proof, Commun. Math. Phys. 165:49–57 (1994).Google Scholar
  15. 15.
    S. Jitomirskaya, Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2, Commun. Math. Phys. 168:563–570 (1995).Google Scholar
  16. 16.
    S. Jitomirskaya, Continuous spectrum and uniform localization for ergodic Schrödinger operators, J. Funct. Anal. 145:312–322 (1997).Google Scholar
  17. 17.
    S. Jitomirskaya and Y. Last, Anderson localization for the almost Mathieu equation, III. Semi-uniform localization, continuity of gaps, and measure of the spectrum, Commun. Math. Phys. 195:1–14 (1998).Google Scholar
  18. 18.
    G. Jona-Lasinio, F. Martinelli, and E. Scoppola, Multiple tunnelings in d-dimensions: A quantum particle in a hierarchical potential, Ann. Inst. Henri Poincaré 42:73–108 (1985).Google Scholar
  19. 19.
    H. Kunz, and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys. 78:201–246 (1980).Google Scholar
  20. 20.
    Y. Last, Quantum dynamics and decomposition of singular continuous spectrum, J. Funct. Anal. 142:406–445 (1996).Google Scholar
  21. 21.
    L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-Verlag, 1992).Google Scholar
  22. 22.
    B. Simon, Schrödinger semi-groups, Bull. Amer. Math. Soc. 7:447–526 (1982).Google Scholar
  23. 23.
    Ya. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys. 46:861–909 (1987).Google Scholar
  24. 24.
    T. Spencer, Localization for random and quasiperiodic potentials, J. Stat. Phys. 51:1009–1019 (1998).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • François Germinet
    • 1
  1. 1.UFR de Mathématiques and LPTMC, Université Paris VII, Denis DiderotParis Cedex, 05France
  2. 2.UFR de Mathématiques and URA, USTL

Personalised recommendations