Journal of Statistical Physics

, Volume 94, Issue 5–6, pp 759–777 | Cite as

Dissipation Statistics of a Passive Scalar in a Multidimensional Smooth Flow

  • Andrea Gamba
  • Igor V. Kolokolov

Abstract

We compute analytically the probability distribution function \(P\)(ε) of the dissipation field ε=(∇θ)2 of a passive scalar θ advected by a d-dimensional random flow, in the limit of large Peclet and Prandtl numbers (Batchelor–Kraichnan regime). The tail of the distribution is a stretched exponential: for ε→∞, ln \(P\)(ε)∼−(d2ε)1/3.

dissipation statistics passive scalar turbulence intermittency functional integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Ould-Ruis, F. Anselmet, P. Le Gal, and S. Vaienti, Physica D 85:405 (1995).Google Scholar
  2. 2.
    M. Holzer and E. Siggia, Phys. Fluids 6:1820 (1994).Google Scholar
  3. 3.
    G. K. Batchelor, J. Fluid Mech. 5:113 (1959).Google Scholar
  4. 4.
    R. H. Kraichnan, J. Fluid Mech. 64:737 (1974).Google Scholar
  5. 5.
    M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev. E 56:5483 (1997).Google Scholar
  6. 6.
    M. Chertkov, G. Falkovich, and I. Kolokolov, Phys. Rev. Lett. 80:2121 (1998).Google Scholar
  7. 7.
    I. V. Kolokolov, Phys. Lett. A 114:99 (1986); Ann. Phys. 202:165 (1990).Google Scholar
  8. 8.
    M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. E 51:5068 (1995).Google Scholar
  9. 9.
    G. Falkovich and V. Lebedev, Phys. Rev. E 50:3883 (1994).Google Scholar
  10. 10.
    M. Chertkov, A. Gamba, and I. Kolokolov, Phys. Lett. A 192:435 (1994).Google Scholar
  11. 11.
    A. Gamba and I. V. Kolokolov, J. Stat. Phys. 85:489 (1996).Google Scholar
  12. 12.
    D. Bernard, K. Gawedzki, and A. Kupiainen, J. Stat. Phys. 90:519 (1998).Google Scholar
  13. 13.
    M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev. Lett. 80:512 (1998).Google Scholar
  14. 14.
    I. Kolokolov, V. Lebedev, and M. Stepanov, preprint chao-dyn/9810019.Google Scholar
  15. 15.
    R. H. Kraichnan, Phys. Fluids 11:945 (1968).Google Scholar
  16. 16.
    B. I. Shraiman and E. D. Siggia, Phys. Rev. E 49:2912 (1994).Google Scholar
  17. 17.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, San Diego, 1994).Google Scholar
  18. 18.
    E. Balkovsky and G. Falkovich, Phys. Rev. E 57:1231 (1998).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • Andrea Gamba
    • 1
  • Igor V. Kolokolov
    • 2
  1. 1.Dipartimento di Matematica, Politecnico di TorinoTorinoItaly
  2. 2.Budker InstituteNovosibirskRussia

Personalised recommendations