Advertisement

Journal of Materials Science

, Volume 34, Issue 2, pp 329–336 | Cite as

Effect of elastic interaction energy on coarsening of γ′ precipitates in a mechanically alloyed ODS Ni-base superalloy

  • Ho J. Ryu
  • Soon H. Hong
  • J. Weber
  • J. H. Tundermann
Article

Abstract

The coarsening behavior of γ′ precipitates with a uniform size distribution and with a bimodal size distribution in a mechanically alloyed ODS Ni-base superalloy were investigated to clarify the effect of elastic interaction energy on the coarsening behavior of γ′ precipitates. The coarsening rate decreased with increasing size of γ′ precipitates with a uniform size distribution, contrary to the classical LSW theory, and the coarsening behavior of γ′ precipitates with a bimodal size distribution exhibited Ostwald ripening in which the larger precipitates grow at the expense of smaller precipitates. The driving force for coarsening of γ′ precipitates was analyzed based on the two-particle model, considering the effect of elastic interaction energy in addition to the effect of interfacial energy. The contribution of elastic interaction energy on the total energy was found to increase with increasing size of precipitates, and the decelerated coarsening of γ′ precipitates was attributed to the decrease in the driving force for coarsening with increasing size of precipitates.

Keywords

Polymer Total Energy Expense Interaction Energy Interfacial Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    _ C. T. Sims, N. S. Stoloff and W. C. Hagel, in “Superalloys II” (John Wiley & Sons, New York, 1987).Google Scholar
  2. 2.
    J. K. Tien and T. Caufield, in “Superalloys, Supercomposites and Superceramics” (Academic Press, 1989).Google Scholar
  3. 3.
    A. A. Hopgood and J. W. Martin, Mater. Sci. Eng. 91 (1987) 105.Google Scholar
  4. 4.
    R. A. Mackay and M. V. Nathal, Acta Metall. Mater. 38 (1990) 993.Google Scholar
  5. 5.
    K. Trinckauf, J. Pesicka, C. Schlesier and E.Nembach, Phys. Status Solidi A 131 (1992) 345.Google Scholar
  6. 6.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35.Google Scholar
  7. 7.
    C. Wagner, Z. Electrochem. 65 (1961) 581.Google Scholar
  8. 8.
    A. J. Ardell, Acta Metall. 20 (1972) 61.Google Scholar
  9. 9.
    P. W. Voorhees and M. E. Glicksman, ibid. 32 (1984) 2001.Google Scholar
  10. 10.
    S. C. Hardy and P. W. Voorhees, Metall. Trans. A 19 (1988) 2713.Google Scholar
  11. 11.
    A. Maheshwari and A. J. Ardell, Acta Metall. Mater. 40 (1992) 2661.Google Scholar
  12. 12.
    M. J. Kaufman, P. W. Voorhees, W. C. Johnson and F. S. Biancaniello, Metall. Trans. A 20 (1989) 2171.Google Scholar
  13. 13.
    A. J. Ardell, R. B. Nicholson and J. D. Eshelby, Acta Metall. 14 (1966) 1295.Google Scholar
  14. 14.
    P. K. Footner and B. P. Richards, J. Mater Sci. 17 (1982) 2141.Google Scholar
  15. 15.
    A. Onuki and H. Nishmori, Phys. Rev. B 43 (1991) 13649.Google Scholar
  16. 16.
    O. Paris, F. Langmayr, G. Vogl and P. Fratzl, Z. Met.kd. 86 (1995) 12.Google Scholar
  17. 17.
    A. G. Khachaturyan and G. A. Shatalov, Sov. Phys.-Solid State 11 (1969) 118.Google Scholar
  18. 18.
    W. C. Johnson and J. K. Lee, Metall. Trans. A 10 (1979) 1141.Google Scholar
  19. 19.
    T. A. Abinandanan and W. C. Johnson, Acta Metall.Mater. 41 (1993) 17.Google Scholar
  20. 20.
    T. Miyazaki and M. Doi, Mater. Sci. Eng. A 110 (1989) 175.Google Scholar
  21. 21.
    K. Kawasaki and Y. Enomoto, Physica A 150 (1988) 463.Google Scholar
  22. 22.
    T. Miyazaki, T. Koyama and M. Doi, Mater. Sci. Eng. A 169 (1993) 159.Google Scholar
  23. 23.
    Z. Fang, B. R. Patterson and M. E. Turner, Acta Metall. Mater. 40 (1992) 713.Google Scholar
  24. 24.
    W. C. Johnson, Acta Metall. 32 (1984) 465.Google Scholar
  25. 25.
    J. M. Yellup and B. A. Parker, Phys. Stat. Solidi A 62 (1980) 637.Google Scholar
  26. 26.
    D. J. Chellman and A. J. Ardell in Proceedings of the Tenth RISO International Symposium on Metallurgy and Materials Science (1989) p. 295.Google Scholar
  27. 27.
    X. Zheng, Z. Phys. B 93 (1994) 501.Google Scholar
  28. 28.
    A. D. Sequeira, H. A. Calderon and G. Kostorz, Scr. Metall. Mater. 30 (1994) 7.Google Scholar
  29. 29.
    H. J. Ryu, S. H. Hong and Y. G. Kim, J. Korean Inst. Met. Mater. 33 (1995) 1176.Google Scholar
  30. 30.
    H. Yamauchi and D. De fontaine, Acta Metall. 27 (1979) 763.Google Scholar
  31. 31.
    T. Mura, in “Micromechanics of defects in solids” (Martinus Nijhoff Publishers, 1982).Google Scholar
  32. 32.
    A. J. Ardell, Scr. Metall. Mate. 24 (1990) 343.Google Scholar
  33. 33.
    K. C. King, P. W. Voorhees, G. B. Olson and T. Mura, Metall. Trans. A 22 (1991) 2199.Google Scholar
  34. 34.
    T. Miyazaki, T. Koyama and M. Doi, Acta Metall. Mater. 42 (1994) 3417.Google Scholar
  35. 35.
    M. Doi, Prog. Mater. Sci. 40 (1996) 79.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Ho J. Ryu
    • 1
  • Soon H. Hong
    • 1
  • J. Weber
    • 2
  • J. H. Tundermann
    • 2
  1. 1.Department of Materials Science and Engineering,Korea Advanced Institute of Science and Technology,Taejon,Korea
  2. 2.Inco Alloys International, Inc.Huntington,USA

Personalised recommendations