Journal of Materials Science

, Volume 33, Issue 23, pp 5595–5600 | Cite as

Thermoelectric properties of the n-type 85% Bi2 Te3-15% Bi2 Se3 alloys doped with Sbl3 and CuBr

  • D. B. HYUN
  • J. S. HWANG
  • B. C. YOU
  • T. S. OH
  • C. W. HWANG
Article

Abstract

The temperature dependence of the Hall mobility, Seebeck coefficient, electrical resistivity, thermal conductivity, and figure-of-merit of the SbI3 and CuBr-doped 85% Bi2Te3-15% Bi2Se3 single crystals have been characterized at temperatures ranging from 77 K to 600 K. The scattering parameter in 85% Bi2Te3-15% Bi2Se3 single crystal was determined as 0.1 from the temperature dependence of the carrier mobility. With increasing the amount of Sbl3 or CuBr doping, the Seebeck coefficient of 85% Bi2Te3-15% Bi2Se3 decreased and the temperature at which the Seebeck coefficient shows a maximum shifted to higher temperature. Compared to the Sbl3-doped specimens, the CuBr-doped single crystals exhibited higher (m* / m0)3/2 μc, implying that CuBr is a more effective dopant to improve the material factor and thus the figure-of-merit of 85% Bi2Te3-15% Bi2Se3. The maximum figure-of-merit of 2.0 × 10−3/K and 2.2 × 10−3/K was obtained for 0.1 wt % Sbl3-doped specimen and 0.03 wt % CuBr-doped specimen, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Rowe, in “CRC Handbook of Thermoelectrics” (CRC Press, Inc., Boca Raton, 1995) p. 617.Google Scholar
  2. 2.
    A. F. Ioffe, in “Semiconductor Thermoelements and Thermoelectric Cooling” (Infosearch, London, 1957) p. 155.Google Scholar
  3. 3.
    J. W. Vandersande and J.-P. Fleurial, in Proceedings of the 15th International Conference on Thermoelectrics, Pasadena, California, March 1996, edited byThierry Caillat (1996) p. 252.Google Scholar
  4. 4.
    R. G. Cope and A. W. Penn, J. Mater. Sci. 3 (1968) 103.Google Scholar
  5. 5.
    D. B. Hyun, H. P. Ha and J. D. Shim, in Proceedings of the 11th International Conference on Thermoelectrics, Arlington, Texas, October 1992, edited byK. R. Rao (1992) p. 266.Google Scholar
  6. 6.
    D. L. Greenaway and G. Harbeke, J. Phys. Chem. Solids 26 (1965) 1585.Google Scholar
  7. 7.
    J. Black, E. M. Conwell, L. Seigel and C. W. Spencer, J. Phys. Chem. Solids 2 (1957) 240.Google Scholar
  8. 8.
    H. Kaibe, M. Sakata, Y. Isoda and I. Nishida, J. Jpn. Inst. Metals 53 (1989) 958.Google Scholar
  9. 9.
    H. J. Goldsmid, in “Thermoelectric Refrigeration” (Plenum Press, New York, 1964) p. 134.Google Scholar
  10. 10.
    D. M. Rowe and C. M. Bhandari, in “Modern Thermoelectrics” (Holt, Rinehart and Winston, London, 1983) p. 7.Google Scholar
  11. 11.
    P. C. Eklund and A. K. Mabatah, Rev. Sci. Instrum.48 (1977) 775.Google Scholar
  12. 12.
    T. C. Harman, J. H. Cahn and M. J. Logan, J. Appl. Phys.30 (1959) 1351.Google Scholar
  13. 13.
    K. Seeger, in “Semiconductor Physics” (Springer-Verlag, New York, 1982) p. 46.Google Scholar
  14. 14.
    L. C. Bennett and J. R. Wiese, J. Appl. Phys.32 (1961) 562.Google Scholar
  15. 15.
    C. H. Champness, W. B. Muir and P. T. Chiang, Can. J. Phys.45 (1967) 3611.Google Scholar
  16. 16.
    R. Ionescu, J. Jaklovszky, N. Nistro and A. Chiculita, Phys. Stat. Sol. (a) 27 (1975) 27.Google Scholar
  17. 17.
    H. Kaibe, Y. Tanaka, M. Sakata and I. Nishida, J. Phys. Chem. Solids 50 (1989) 945.Google Scholar
  18. 18.
    C. B. Satterthwaite and R. W. Ure, Jr., Phys. Rev.108 (1957) 1164.Google Scholar
  19. 19.
    W. M. Yim, E. V. Fizke and F. D. Rosi, J. Mater. Sci.1 (1966) 274.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • D. B. HYUN
    • 1
  • J. S. HWANG
    • 1
  • B. C. YOU
    • 1
  • T. S. OH
    • 2
  • C. W. HWANG
    • 3
  1. 1.Division of Metals,Korea Institute of Science and Technology,SeoulKorea
  2. 2.Dept. of Metallurgy and Materials Science,Hong Ik University,SeoulKorea
  3. 3.Thermotek, LTD,SungnamKorea

Personalised recommendations