Journal of Materials Science

, Volume 33, Issue 23, pp 5581–5588 | Cite as

Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxS100−x glasses

  • S. O. KASAP
  • M. VLCEK


Thermal properties of chalcogenide AsxS100−x glasses in the glass transition region have been studied by modulated-temperature differential scanning calorimetry (MTDSC). All samples in this work were given the same thermal history by heating to a temperature above the glass transition, equilibrating and then cooling at a rate of 5°C/min to a temperature of 20°C. The reversing and non-reversing heat flows through the glass transformation region during both heating and cooling schedules were measured and the values of the parameters Tg, ΔH, Cp and ΔCp, which characterize the thermal events in the glass transition region, were determined as a function of the glass composition. The structurally determined parameters Tg, ΔH, Cp and ΔCp reveal major extrema when the composition of AsxS100−x glass becomes As40S60, that is the same as the composition of the corresponding stoichiometric compound. In addition, we observe “small thresholds” in these properties at 28.5 at % As (As28.5S71.5) around the same composition as that reported in the As-Se glasses. No such thermal analysis had been done on the AsxS100−x glasses previously. It is shown that AsxS100−x glasses where x < 25 at % As are formed from two glass phases. From MTDSC measurements, it was possible to establish the probable composition of the high temperature glass phase and from Raman spectroscopy it was possible to correlate the MTDSC results with the structure of the As-S glasses.


Differential Scanning Calorimetry Raman Spectroscopy Thermal History Glass Composition Glass Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Reading, D. Elliott and V. L. Hill, J. Thermal Analysis 40 (1993) 949.Google Scholar
  2. 2.
    T. Wagner and S. O. Kasap, Philos. Mag. B 74 (1996) 667.Google Scholar
  3. 3.
    S. O. Kasap, T. Wagner and K. Maeda, Jpn. J. Appl. Phys. 35 (1996) L1116.Google Scholar
  4. 4.
    T. Wagner, S. O. Kasap and K. Maeda, J. Mater. Res. 12 (1997) 1893.Google Scholar
  5. 5.
    X. Feng, W. J. Bresser and P. Boolchand, Phys. Rev. Letts 78 (1997) 4422.Google Scholar
  6. 6.
    X. Feng, W. J. Bresser, M. Zhang, B. Goodman and P. Boolchand, J. Non-Cryst. Solids 222 (1997) 137.Google Scholar
  7. 7.
    T. Wagner, S. O. Kasap and K. Petkov, J. Mater. Sci. 32 (1997) 5889.Google Scholar
  8. 8.
    J. C. Phillips, J. Non-Cryst. Solids 34 (1979) 153.Google Scholar
  9. 9.
    idem., Physics Today, February (1982) 27.Google Scholar
  10. 10.
    M. F. Thorpe, J. Non-Cryst. Solids 57 (1983) 355.Google Scholar
  11. 11.
    K. Tanaka, Phys. Rev. B 39 (1989) 1270.Google Scholar
  12. 12.
    S. R. Elliott, “Physics of Amorphous Materials” (Longman, New York, 1983) p. 53.Google Scholar
  13. 13.
    idem., Nature 354 (1991), 445 and references therein.Google Scholar
  14. 14.
    M. T. Mora in “Amorphous Insulators and Semiconductors,” edited by M. F. Thorpe and M. I. Mitkova (Kluwer Academic Publishers, Boston, 1996) p. 45.Google Scholar
  15. 15.
    K. Tanaka and H. Hisakuni, J. Non-Cryst. Solids 198-200 (1996) 714.Google Scholar
  16. 16.
    H. Hamanaka, S. Konagai, K. Murayama, M. Yamaguchi and K. Morigaki, ibid. 198-200 (1996) 808.Google Scholar
  17. 17.
    T. Wagner, V. Perina, M. Vlcek, M. Frumar, E. Rauhala, J. Saarilahti and P. J. S. Ewen, ibid. 212 (1997) 157.Google Scholar
  18. 18.
    N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin and S. Shutina, ibid. 198-200 (1996) 766.Google Scholar
  19. 19.
    N. Nordman and O. Nordman, J. Appl. Phys. 82 (1997) 1521.Google Scholar
  20. 20.
    M. I. Mitkova in “Amorphous Insulators and Semiconductors,” edited byM. F. Thorpe and M. I. Mitkova (Kluwer Academic Publishers, Boston, 1996) p. 71.Google Scholar
  21. 21.
    M. Reading, A. Luget and R. Wilson, Thermochimica Acta 238 (1994) 295.Google Scholar
  22. 22.
    B. Wunderlich, Y. Jin and A. Boller, ibid. 238 (1994) 277.Google Scholar
  23. 23.
    S. Sauerbrunn and L. Thomas, American Laboratory January (1995) 19.Google Scholar
  24. 24.
    L. Thomas, “NATAS Notes,” Vol. 26 (North American Thermal Analysis Society, Sacramento, CA, USA,1995) p. 48.Google Scholar
  25. 25.
    B. Hassel, “NATAS Notes” Vol. 26 (North American Thermal Analysis Society, USA)26 (1995) p. 54.Google Scholar
  26. 26.
    K. J. Jones, I. Kinshott, M. Reading, A. A. Lacey, C. Nikolopoulos and H. M. Pollock, Thermochim. Acta 304 (1997) 187.Google Scholar
  27. 27.
    A. Boller, C. Schick and B. Wunderlich b, ibid. 266 (1995) 97Google Scholar
  28. 28.
    J. M. Hutchinson and S. Montserra, ibid. 304 (1997) 257.Google Scholar
  29. 29.
    idem., ibid. 286 (1996) 263.Google Scholar
  30. 30.
    J. E. K. Schawe, ibid. 261 (1995) 183.Google Scholar
  31. 31.
    A. Feltz, “Amorphous Inorganic Materials and Glasses” (VCH, Weinheim, 1993) Chaps. 2 and 3, p. 16, 212 and references therein.Google Scholar
  32. 32.
    “ModulatedDSCTMCompendium, Basic Theory and Experimental Considerations,” TA Instruments (TA Instruments Inc., Newcastle, DE, USA, 1996) pp. 25–27.Google Scholar
  33. 33.
    P. S. Gill, S. R. Sauerbrunn and M. Reading, J. Thermal Analysis 40 (1993) 931.Google Scholar
  34. 34.
    R. Blachnik and A. Hoppe, J. Non-Cryst. Solids 34 (1979) 191.Google Scholar
  35. 35.
    J. C. Phillips, ibid. 43 (1981) 37.Google Scholar
  36. 36.
    A. Feltz, “Amorphous Inorganic Materials and Glasses” (VCH, Weinheim, 1993) Chap. 3.Google Scholar
  37. 37.
    A. T. Ward, J. Physical Chemistry 72 (1968) 4133.Google Scholar
  38. 38.
    P. J. S. Ewen, M. J. Silk and A. E. Owen, “The Structure of Non-Crystalline Materials,” edited byP. H. Gaskell (Taylor and Francis, London, 1977) p. 127.Google Scholar
  39. 39.
    G. Lucovsky, F. L. Geils and R. C. Keezer, “The Structure of Non-Crystalline Materials,” edited byP. H. Gaskell (Taylor and Francis, London, 1977) p. 127.Google Scholar
  40. 40.
    O. I. Shpotyuk, Zh. Prikl. Spektroskopii 59 (1993) 551.Google Scholar
  41. 41.
    O. I. Spotyuk, Phys. Stat. Sol. B 183 (1994) 365.Google Scholar
  42. 42.
    S. A. Solin and G. V. Papatheodorou, Phys. Rev. B 15 (1997) 2087.Google Scholar
  43. 43.
    M. Frumar, A. P. Firth and A. E. Owen, Philos. Mag. B 50 (1984) 463.Google Scholar
  44. 44.
    E. Diemann, Revue de Chimie Minerale 16 (1979) 237.Google Scholar
  45. 45.
    A. Feltz and G. Pfaff, J. Non-Cryst. Solids 77-78 (1985) 1137.Google Scholar
  46. 46.
    Z. U. Borisova, “Glassy Semiconductor” (Plenum Press, New York, 1981) Chap. 2 and references therein.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

    • 1
  • S. O. KASAP
    • 1
  • M. VLCEK
    • 2
    • 2
    • 2
  1. 1.Electronic Materials Research Laboratories, Department of Electrical Engineering,University of Saskatchewan,Saskatoon,Canada
  2. 2.Department of General and Inorganic Chemistry,University of Pardubice,PardubiceCzech Republic

Personalised recommendations