Journal of Materials Science

, Volume 33, Issue 21, pp 5265–5273 | Cite as

The kinetics of surface induced sinter crystallization and the formation of glass-ceramic materials

  • I. Gutzow
  • R. Pascova
  • A. Karamanov
  • J. Schmelzer


A thorough analysis is given of a process which is of great importance for the formation of many present day glass ceramic materials: sinter-crystallization. In the first part of the paper the problems determining surface induced nucleation of glasses are analyzed, emphasis being given to the influence of elastic strains and surface contamination by active substrates. The second stage of the analysis is centred on the dependence of crystal growth and overall crystallization kinetics on the mean size of an ensemble of sintering glass grains. Here a formalism is derived, connecting overall crystallization with the mean size of the crystallizing system of glass particles. In the third part the interdependence sintering – crystallization is investigated. Several cases of this interrelation are analyzed in details for different mechanisms of growth of nuclei, athermally formed on the grain surface.


Polymer Crystallization Crystal Growth Active Substrate Ceramic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Mcmillan, “Glass-Ceramics” (Academic Press, London, 1964).Google Scholar
  2. 2.
    Z. Strnad, “Glass-Ceramic Materials” (Elsevier, Amsterdam, 1986).Google Scholar
  3. 3.
    A. I. Berejnoi, “Sitalli i Fotositalli” (Mashinostroene, Moscow, 1981).Google Scholar
  4. 4.
    I. Gutzow and J. Schmelzer, “The Vitreous State” (Springer, Berlin, New York, 1995).Google Scholar
  5. 5.
    I. Gutzow, Contemp. Phys. 21 (1980) 121, 243.Google Scholar
  6. 6.
    R. de Reaumurq, Memoires I'Academie Royale des Sciences, (Paris, 1739).Google Scholar
  7. 7.
    G. Tammann, “Der Glaszustand” (Leopold Voss Verlag, Leipzig, 1933).Google Scholar
  8. 8.
    B. Y. Blumberg, “Introduction into the Physical Chemistry of Glasses” (Chemistry State Publishers, Leningrad, 1939).Google Scholar
  9. 9.
    W. Nachtigal, V. Opitz, E. Pech and H. J. Pohl, “Glas” (Verlag der Wissenschaft, Berlin 1988).Google Scholar
  10. 10.
    W. Sack, in “Beiträge zur Angewandten Glasforschung, ” edited by E. Schott (Universität Mainz, 1959) p. 111.Google Scholar
  11. 11.
    M. Tashiro, J. Non-Cryst. Sol. 73 (1985) 575.Google Scholar
  12. 12.
    E. M. Rabinovich, in “Nucleation and Crystallization in Glasses, ” Vol. 4, edited by J. H. Simons, D. R. Uhlmann and G. H. Bell (American Ceram. Soc., Westerville, 1982) pp. 327–333.Google Scholar
  13. 13.
    A. Karamanov, I. Gutzow, I. Penkov, J. Andreev and B. Bogdanov, Glastech. Ber. Glass Sci. Technol. 67 (1994) 202.Google Scholar
  14. 14.
    J. Schmelzer, R. Pascova, J. MÖller and I. Gutzow, J. Non-Cryst. Sol. 162 (1993) 26.Google Scholar
  15. 15.
    R. MÜller, Th. Hubert and M. Kirsch, Silikattechnik 37 (1986) 111.Google Scholar
  16. 16.
    R. MÜller, D. Thamm, in Proceedings 4th Otto-Schott Kolloquium, Wissenschaftliche Zeitschrift der Iniversität Jena, 1990, p. 187.Google Scholar
  17. 17.
    E. D. Zanotto, J. Non-Cryst. Sol. 129 (1991) 183.Google Scholar
  18. 18.
    A. M. Kalinina, V. N. Filipovich and Z. D. Alekseeva, Fiz. Khim. Stekla 18 (1992) 52.Google Scholar
  19. 19.
    V. N. Filipovich, Z. D. Alekseeva and A. M. Kalinina, ibid 16 (1990) 81.Google Scholar
  20. 20.
    I. Gutzow, J. Cryst. Growth 48 (1979) 569.Google Scholar
  21. 21.
    A. Karamanov, I. Gutzow, B. Bogdanov, I. Chomakov and A. Kostov, Glastech. Ber. Glass Sci. Technol. 67 (1994) 227.Google Scholar
  22. 22.
    A. R. Boccaccini, M. Kopf and W. Stumpfe, Ceramics International, in print.Google Scholar
  23. 23.
    K. J. Thome-Kozmiensky, in “Thermische Abfallbehandlung, ” edited by U. Pahl and C. Gammelin (EF-Verlag fur Energie und Umwelttechnik GMBH) 1996.Google Scholar
  24. 24.
    K. Tabata, J. Amer. Ceram. Soc. 10 (1927) 6.Google Scholar
  25. 25.
    J. Schmelzer, J. MÖller, I. Gutzow, R. Pascova, R. MÜller and W. Pannhorst, J. Non-Cryst. Sol. 183 (1995) 215.Google Scholar
  26. 26.
    F. R. N. Nabarro, Proc. Royal Soc. (London) A 175 (1940) 519.Google Scholar
  27. 27.
    J. P. Hirth, G. M. Pound, “Condensation and Evaporation” (Pergamon Press, London, 1963).Google Scholar
  28. 28.
    B. Mutafchiev, in “Handbook of Crystal Growth, ” edited by T. D. J. Hurle (Elsevier Science Publishers, Amsterdam 1993) p. 187.Google Scholar
  29. 29.
    J. MÖller, J. Schmelzer, I. Gutzow and R. Pascova, Phys. Stat. Sol. (b) 180 (1993) 315.Google Scholar
  30. 30.
    E. D. Zanotto, J. Non-Cryst. Sol. 129 (1991) 183.Google Scholar
  31. 31.
    R. MÜller, R. Naumann and S. Reinsch, in Proc. Bunsengesellschaft on Phys. Chem. Glasses, March 1996, Jena, in print.Google Scholar
  32. 32.
    K. Mampel, Z. Phys. Chem. A 187 (1940) 43, 225.Google Scholar
  33. 33.
    K. M. Todes, Zh. Fiz. Khim. (USSR) 14 (1940) 1224.Google Scholar
  34. 34.
    M. Avrami, J. Chem. Phys. 7 (1939) 1103; 8 (1940) 212; 9 (1941) 177.Google Scholar
  35. 35.
    I. Gutzow, D. Kashchiev and I. Avramov, J. Non-Cryst. Sol. 73 (1985) 477.Google Scholar
  36. 36.
    P. Barret, “Cinetique Heterogene” (Gauthier-Villars, Paris 1973) Chap. 5.Google Scholar
  37. 37.
    I. Gutzow, Z.Anorgan.Allgemeine Chemie 302 (1959) 18, 259.Google Scholar
  38. 38.
    R. MÜller, D. Thamm and M. Kirsch, in Proc. SILICER, 1990, Nürnberg.Google Scholar
  39. 39.
    S. Middlemann “The Flow of High Polymers” (Academic Press, New York, 1962) Chap. 4.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • I. Gutzow
    • 1
  • R. Pascova
    • 1
  • A. Karamanov
    • 1
  • J. Schmelzer
    • 2
  1. 1.Institute of Physical Chemistry,Bulgarian Academy of Sciences,SofiaBulgaria
  2. 2.Fachbereich Physik,Universität Rostock,Rostock,Germany

Personalised recommendations