Journal of Materials Science

, Volume 33, Issue 1, pp 229–234 | Cite as

Glass formation and glass structure of the BiO1.5—PbO—CuO system

  • YI Hu
  • N.-H Liu
  • U.-L Lin


The glass-forming region of the BiO1.5—PbO—CuO system has been determined by the melt-quenching technique. The glass transition temperatures, Tg, and the first crystallization peak temperatures, Tx1, are around 240°C and 285°C, respectively. The glass structure consists of [BiO3] and [BiO6] units, and the conversion between these polyhedra mainly depends on the CuO and PbO content. The covalent characteristic in the infrared absorption spectra of the [PbOn] pyramidal units becomes significant when the glass contains more PbO.


Polymer Crystallization Absorption Spectrum Transition Temperature Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Maeda, Y. Tanaka, M. Fukutomi and T. Asano, Jpn. J. Appl. Phys. 27 (1988) L209.Google Scholar
  2. 2.
    T. Komatsu, K. Imai, R. Sato, K. Matusita and T. Yamashita, ibid. 27 (1988) L533.Google Scholar
  3. 3.
    H. Zheng and J.D. Mackenzie, Phys. Rev. B 38 (1988) 7166.Google Scholar
  4. 4.
    D. G. Hinks, L. Soderholm, D. W. Capone, II, B. Dabroski, A. W. Mitchell and D. Shi, Appl. Phys. Lett. 53 (1988) 423.Google Scholar
  5. 5.
    A. Bishay and C. Maghrabi, Phys. Chem. Glasses 10 (1969) 1.Google Scholar
  6. 6.
    W. H. Dumbaugh, ibid. 19 (1978) 121.Google Scholar
  7. 7.
    H. Zheng, R. Xu and J. D. Mackenzie, J. Mater. Res. 4, (1989) 911.Google Scholar
  8. 8.
    F. Miyaji, T. Yoko and S. Sakka, J. Non-Cryst. Solids 126 (1990) 170.Google Scholar
  9. 9.
    H. Zheng, Y. Hu and J. D. Mackenzie, Amer. Ceram. Soc. Proc. 113 (1989) 735.Google Scholar
  10. 10.
    S. A. Sunshine, T. Siegrist, L. F. Schneemeyer, D. W. Murphy, R. J. Cava, B. B. Batlogg, R. B. Van Dovwe, R. M. Fleming, S. H. Glarum, S. Nakahara, R. Farrow, J. J. Krajewski, S. M. Zahurak, J. V. Waszczak, J. H. Marshall, P. Marsh, L. W. Rupp JR and W. F. Peck, Phys. Rev. B 38 (1988) 893.Google Scholar
  11. 11.
    M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii, and H. Mazaki, Jpn. J. Appl. Phys. 27 (1988) L1041.Google Scholar
  12. 12.
    Y. B. Dimitriev and V. T. Mihailova, J. Mater. Sci. Lett. 9 (1990) 1251.Google Scholar
  13. 13.
    N. H. Ray, in Proceedings of the 9th International Congress on Glass, Sci. Technol. Commun. 1 (1971) 633.Google Scholar
  14. 14.
    V. Dimitrov, Y. Dimitriev and A. Montenero, J. Non-Cryst. Solids 180 (1994) 51.Google Scholar
  15. 15.
    Y. Dimitriev and M. Mihailova, in Proceedings of the 16th International Congress on Glass, Madrid, 1992 Bol. Soc. Esp. Cerami. Vidrio 3 (1992) 293.Google Scholar
  16. 16.
    M. V. Roode, T. H. Huang, J. J. Henchler and K. C. Cole, J. Amer. Ceram. Soc. 69 (1986) 449.Google Scholar
  17. 17.
    T. Yoko, K. Tadanaga, F. Miyaji and A. Sakka, J. Non-Cryst. Solids 150 (1992) 192.Google Scholar
  18. 18.
    M. Imaoka, H. Hasegawa and I. Yasui, ibid. 85 (1986) 393.Google Scholar
  19. 19.
    H. Morikawa, Y. Takagi and I. Ohno, ibid. 53 (1982) 173.Google Scholar
  20. 20.
    K. Yamada, A. Matsumoto, N. Niimura, T. Fukunaga, N. Hayashi and N. Watanabe, J. Phys. Soc. Jpn 55 (1968) 831.Google Scholar
  21. 21.
    W. L. Konijnendijk and H. Verweij, Philips Research Laboratory Report (1976) p. 227.Google Scholar
  22. 22.
    F. Miyaji, T. Yoko, J. Jin, S. Sakka, T. Fukunaga and M. Misawa, J. Non-Cryst. Solids 175 (1994) 211.Google Scholar
  23. 23.
    W. H. Dumbaugh, Phys. Chem. Glasses 27 (1986) 119.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • YI Hu
    • 1
  • N.-H Liu
    • 1
  • U.-L Lin
    • 1
  1. 1.Department of Materials EngineeringTatung Institute of TechnologyTaipeiTaiwan

Personalised recommendations