Marine Geophysical Researches

, Volume 20, Issue 1, pp 41–56 | Cite as

New Observations on the Distribution of Past and Present Hydrothermal Activity in the TAG Area of the Mid-Atlantic Ridge (26°08′ N)

  • Sheri N. White
  • Susan E. Humphris
  • Martin C. Kleinrock


Seafloor acoustic and photographic imagery combined with high- resolution bathymetry are used to investigate the geologic and tectonic relations between active and relict zones of hydrothermal venting in the TAG (Trans-Atlantic Geotraverse) hydrothermal field at 26°08′N on the Mid-Atlantic Ridge (MAR). The TAG field consists of a large, currently active, high-temperature mound, two relict zones (the Alvin and Mir zones), and an active low-temperature zone. The active mound and the Alvin relict zone lie along a series of closely-spaced, axis-parallel (NNE-trending) faults in an area of active extension east of the neovolcanic zone. The Alvin zone extends for 2.5 km along these faults from the valley floor onto the eastern wall, and consists of at least five mounds identified using DSL-120 sidescan sonar and bathymetric data. The existence of sulfide structures on most of these mounds is verified with near-bottom electronic still camera (ESC) images from the Argo-II deep-towed vehicle, and is confirmed in at least one case with collected samples. Two of these mounds were previously unidentified. The existence of these mounds extends the length of the Alvin zone by ~0.5 km to the south. Much of the Alvin relict zone appears to be buried by debris from a large mass wasting event on the eastern wall of the median valley. The Mir zone, located on normal fault blocks of the eastern valley wall, cannot be clearly identified in the sidescan data and no structural connections from it to the active mound or Alvin zone can be discerned. The active mound is located at the intersection of an older oblique fault set with the younger axis- parallel faults which extend into the Alvin relict zone, and no fresh volcanics are observed in the vicinity of the mound. The fact that both the active mound and the Alvin relict zone lie along the same set of active, axis-parallel faults suggests that the faults may be a major control on the location of hydrothermal activity by providing pathways for fluid flow from a heat source at the ridge axis.

Hydrothermal activity mid-ocean ridges submarine mineral deposits sidescan sonar 


  1. Blackinton, J. G., Hussong, D. M., and Kosalos, J., 1983, First Results from a Combination Sidescan Sonar and Sea Floor Mapping System (SeaMARC II), Offshore Technol. Conf. OTC 4478, Soc. Pet. Eng., Dallas, TX, 307 pp.Google Scholar
  2. Delaney, J. R., Robigou, V., McDuff, R. E., and Tivey, M. K., 1992, Geology of a Vigorous Hydrothermal System on the Endeavour Segment, Juan de Fuca Ridge. J. Geophys. Res. 97, 19,663–19,682.Google Scholar
  3. Fornari, D. J. and Embley, R. W., 1995, Tectonic and Volcanic Controls on Hydrothermal Processes at the Mid-Ocean Ridge: An Overview Based on Near-Bottom and Submersible Studies, in Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S., and Thomson, R. E. (eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91, AGU, Washington, D. C., pp. 1–46.Google Scholar
  4. Fouquet, Y., Wafik, A., Cambon, P., Mevel, C., Meyer, G., and Gente, P., 1993, Tectonic Setting and Mineralogical and Geochemical Zonation in the Snake Pit Sulfide Deposit (Mid-Atlantic Ridge at 23° N), Econ. Geol. 88, 2018–2036.Google Scholar
  5. Hammond, S. R., 1990, Relationships between Lava Types, Seafloor Morphology, and the Occurrence of Hydrothermal Venting in the ASHES Vent Field of Axial Volcano, J. Geophys. Res. 95, 12,875–12,893.Google Scholar
  6. Haymon, R. M., Fornari, D. J., Von Damm, K. L., Lilley, M. D., Perfit, M. R., Edmond, J. M., Shanks, W. C., Lutz, R. A., Grebmeier, J. M., Carbotte, S., Wright, D., McLaughlin, E., Smith, M., Beedle, N., and Olson, E., 1993, Volcanic Eruption of the Mid-Ocean Ridge along the East Pacific Rise Crest at 9°45–52′ N: Direct Submersible Observations of Seafloor Phenomena Associated with an Eruption Event in April 1991, Earth Planet. Res. Lett. 119, 85–111.Google Scholar
  7. Humphris, S. E., 1995, Hydrothermal Processes at Mid-Ocean Ridges, Rev. Geophys. Suppl., 71–80.Google Scholar
  8. Humphris, S. E. and Kleinrock, M. C., 1996, Detailed Morphology of the TAG Active Hydrothermal Mound: Insights into Its Formation and Growth, Geophys. Res. Lett. 23, 3443–3446.Google Scholar
  9. Johnson, H. P. and Helferty, M., 1990, The Geological Interpretation of Side-Scan Sonar, Rev. Geophys. 28, 357–380.Google Scholar
  10. Karson, J. A. and Rona, P. A., 1990, Block-Tilting, Transfer Faults, and Structural Control of Magmatic and Hydrothermal Processes in the TAG Area, Mid-Atlantic Ridge 26° N, Geol. Soc. Am. Bull. 102, 1635–1645.Google Scholar
  11. Kleinrock, M. C., 1992, Capabilities of Some Systems Used to Survey the Deep-Sea Floor, in Geyer, R. (ed.), CRC Handbook of Geophysical Exploration at Sea, CRC Press, Boca Raton, FL, pp. 35–86.Google Scholar
  12. Kleinrock, M. C. and Humphris, S. E., 1996a, Structural Control on Sea-Floor Hydrothermal Activity at the TAG Active Mound, Nature 382, 149–153.Google Scholar
  13. Kleinrock, M. C. and Humphris, S. E., 1996b, Structural Asymmetry of the TAG Rift Valley: Evidence from a Near-Bottom Survey for Episodic Spreading, Geophys. Res. Lett. 23, 3439–3442.Google Scholar
  14. Lalou, C., Reyss, J.-L., Brichet, E., Rona, P. A., and Thompson, G., 1995, Hydrothermal Activity on a 105-Year Scale at a Slow-Spreading Ridge, TAG Hydrothermal Field, Mid-Atlantic Ridge 26° N, J. Geophys. Res. 100, 17,855–17,862.Google Scholar
  15. Lerner, S., Howland, J., Humphris, S., and Lange, W., 1996, Interactive Inspection and Analysis of Multisensor Data from the TAG Hydrothermal Vent Site, Eos Trans. AGU 77, F768.Google Scholar
  16. Lisitsyn, A. P., Bogdanov, Y. A., Zoneshain, L. P., Kuzmin, M. I., and Sagalevitch, A. M., 1989, Hydrothermal Phenomena in the Mid-Atlantic Ridge at lat. 26° N (TAG Hydrothermal Field), Int. Geol. Rev. 31, 1183–1189.Google Scholar
  17. McGregor, B. A., Harrison, C. G. A., Lavelle, J. W., and Rona, P. A., 1977, Magnetic Anomaly Pattersns on Mid-Atlantic Ridge Crest at 26° N, J. Geophys. Res. 82, 231–238.Google Scholar
  18. Metz, S., Trefry, J. H., and Nelsen, T. A., 1988, History and Geochemistry of a Metalliferous Sediment Core from the Mid-Atlantic Ridge at 26° N, Geochim. Cosmochim. Acta 52, 2369–2378.Google Scholar
  19. Murton, B. J., Klinkhammer, G., Van Dover, C. L., Becker, K., Briais, A., Edge, D., Millard, N., Mitchell, I., Rouse, I., Parson, L., Hayward, N., Rudnicki, M., Sayanagi, K., and Sloan, H., 1993, Direct Measurements of the Distribution and Occurrence of Hydrothermal Activity between 27° N and 30° N on the Mid-Atlantic Ridge, Eos Trans. AGU 74, 99.Google Scholar
  20. Purdy, G. M., Semperé, J.-C., Schouten, H., Dubois, D. L., and Goldsmith, R., 1990, Bathymetry of the Mid-Atlantic Ridge, 24°–31° N: A Map Series, Mar. Geophys. Res. 12, 247–252.Google Scholar
  21. Rona, P. A. and Scott, R. B. (Convenors), 1974, Symposium. Axial Processes of the Mid-Atlantic Ridge. Eos Trans. AGU 55, 292–295.Google Scholar
  22. Rona, P. A., 1980, TAG Hydrothermal Field: Mid-Atlantic Ridge Crest at Latitude 26° N, J. Geol. Soc. London 137, 385–402.Google Scholar
  23. Rona, P. A., Thompson, G., Mottl, M. J., Karson, J. A., Jenkins, W. J., Graham, D., Mallette, M., Von Damm, K., and Edmond, J. M., 1984, Hydrothermal Activity in the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge Crest at 26° N, J. Geophys. Res. 89, 11,365–11,377.Google Scholar
  24. Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H., and Elderfield, H., 1986a, Black Smokers, Massive Sulfides and Vent Biota at the Mid-Atlantic Ridge, Nature 321, 33–37.Google Scholar
  25. Rona, P. A., Pockalny, R. A., and Thompson, G., 1986b, Geologic Setting and Heat Transfer of Black Smokers at TAG Hydrothermal Field, Mid-Atlantic Ridge 26° N, Eos Trans. AGU 67, 1021.Google Scholar
  26. Rona, P. A., Denlinger, R. P., Fisk, M. R., Howard, K. J., Taghon, G. L., Klitgord, K. D., McClain, J. S., McMurray, G. R., and Wiltshire, J. C., 1990, Major Off-Axis Hydrothermal Activity on the Northern Gorda Ridge, Geology 18, 493–496.Google Scholar
  27. Rona, P. A., Bogdanov, Y. A., Gurvich, E. G., Rimski-Korsakov, N. A., Sagalevitch, A. M., Hannington, M. D., and Thompson, G., 1993a, Relict Hydrothermal Zones in the TAG Hydrothermal Field, Mid-Atlantic Ridge 26° N, 45° W, J. Geophys. Res. 98, 9715–9730.Google Scholar
  28. Rona, P. A., Hannington, M. D., Raman, C. V., Thompson, G., Tivey, M. K., Humphris, S. E., Lalou, C., and Petersen, S., 1993b, Active and Relict Seafloor Hydrothermal Mineralization at the TAG Hydrothermal Field, Mid-Atlantic Ridge, Econ. Geol. 88, 1989–2017.Google Scholar
  29. Rona, P. A. and Scott, S. D., 1993, A Special Issue of Sea-Floor Hydrothermal Mineralization: New Perspectives, Econ. Geol. 88, 1935–1975.Google Scholar
  30. Rona, P. A., Petersen, S., Becker, K., Von Herzen, R. P., Hannington, M. D., Herzig, P. M., Naka, J., Lalou, C., and Thompson, G., 1996, Heat Flow and Mineralogy of TAG Relict High-Temperature Hydrothermal Zones: Mid-Atlantic Ridge 26° N, 45° W, Geophys. Res. Lett. 23, 3507–3510.Google Scholar
  31. Scott, R. B., Rona, P. A., McGregor, B. A., and Scott, M. R., 1974, The TAG Hydrothermal Field, Nature 251, 301–302.Google Scholar
  32. Semperé, J.-C., Purdy, G. M., and Schouten, H., 1990, Segmentation of the Mid-Atlantic Ridge between 24° N and 30°40′ N, Nature 344, 427–431.Google Scholar
  33. Sinton, J. M. and Detrick, R. S., 1992, Mid-Ocean Ridge Magma Chambers, J. Geophys. Res. 97, 197–216.Google Scholar
  34. Stein, C. A. and Stein, S., 1994, Constraints on Hydrothermal Heat Flux through the Oceanic Lithosphere from Global Heat Flow, J. Geophys. Res. 99, 3081–3095.Google Scholar
  35. Temple, D. G., Scott, R. B., and Rona, P. A., 1979, Geology of a Submarine Hydrothermal Field, Mid-Atlantic Ridge, 26° N latitude, J. Geophys. Res. 84, 7453–7466.Google Scholar
  36. Tivey, M. A., Rona, P. A., and Kleinrock, M. C., 1996. Reduced Crustal Magnetization beneath Relict Hydrothermal Mounds: TAG Hydrothermal Field, Mid-Atlantic Ridge, 26° N, Geophys. Res. Lett. 23, 3511–3514.Google Scholar
  37. Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D., and Rona, P. A., 1995, Deducing Patterns of Fluid Flow and Mixing within the Active TAG Mound Using Mineralogical and Geochemical Data, J. Geophys. Res. 100, 12,527–12,555.Google Scholar
  38. Thompson, G., Mottl, M. J., and Rona, P. A., 1985, Morphology, Mineralogy, and Chemistry of Hydrothermal Deposits from the TAG Area, 26° N Mid-Atlantic Ridge, Chem. Geol. 49, 243–257.Google Scholar
  39. Thompson, G., Humphris, S. E., Schroeder, B., Sulanowska, M., and Rona, P. A., 1988, Active Vents and Massive Sulfides at 26° N (TAG) and 23° N (SNAKE PIT) on the Mid-Atlantic Ridge, Can. Mineral. 26, 697–711.Google Scholar
  40. Tucholke, B. E., 1992, Massive Submarine Rockslide in the Rift-Valley Wall of the Mid-Atlantic Ridge, Geology 20, 129–132.Google Scholar
  41. Zierenberg, R. A., Schiffman, P., Jonasson, I. R., Tosdal, R., Pickthorn, W., and McClain, J., 1995, Alteration of Basalt Hyaloclastite at the Off-Axis Sea Cliff Hydrothermal Field, Gorda Ridge, Chem. Geol. 126, 77–99.Google Scholar
  42. Zonenshain, L. P., Kuzmin, M. I., Lisitsyn, A. P., Bogdanov, Y. A., and Baranov, B. V., 1989, Tectonics of the Mid-Atlantic Rift Valley between the TAG and MARK areas (26–24° N): Evidence for Vertical Tectonism, Tectonophysics 159, 1–23.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Sheri N. White
    • 1
  • Susan E. Humphris
    • 1
  • Martin C. Kleinrock
    • 2
  1. 1.Department of Geology & GeophysicsWoods Hole Oceanographic InstitutionWoods HoleU.S.A.
  2. 2.Department of GeologyVanderbilt UniversityNashvilleU.S.A.

Personalised recommendations