Advertisement

Journal of Materials Science

, Volume 33, Issue 8, pp 2111–2119 | Cite as

Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain

  • M Yanaka
  • Y Tsukahara
  • N Nakaso
  • N Takeda
Article

Abstract

This paper proposes a modification to the shear lag model for multiple cracking of thin films in order to take into account the residual strain, and uses it to estimate the critical fracture strength of SiOx films with thicknesses from 75 to 660 nm deposited on 12 μm-thick polyethylene terephthalate (PET) substrates. It was found that: (1) The difference of residual strains in the film and substrate increased as the thickness of the film decreased. (2) In both initial and multiple formation of cracks, SiOx films failed at almost constant values of a critical stress ranging from 200 to 300 MPa when the thickness was larger than 200 nm, whereas below that it failed at higher values. © 1998 Chapman & Hall

Keywords

Polymer Thin Film Polyethylene Brittle Critical Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Rice, Food Process. (1992) 78.Google Scholar
  2. 2.
    J. T. Felts, in 36th Proceedings Annual Technical Conference of the Society of Vacuum Coaters (1993) p. 25.Google Scholar
  3. 3.
    M. Yanaka, N. Nakaso, Y. Tsukahara and N. N. Hsu, J. Acoust. Emiss. 13 (1995) 23.Google Scholar
  4. 4.
    P. H. Wojciechowski and M. S. Mendolia, “Physics of thin films” vol. 16, edited by M. H. Francombe and J. L. Vossen (Academic Press, San Diego, 1992).Google Scholar
  5. 5.
    J. Aveston and A. Kelly, J. Mater. Sci. 8 (1973) 352.Google Scholar
  6. 6.
    Idem., Phil. Trans. R. Soc. Lond. A 294 (1980) 519.Google Scholar
  7. 7.
    M. S. Hu and A. G. Evans, Acta Metall. 37 (1989) 917.Google Scholar
  8. 8.
    K. W. Garrett and J. E. Bailey, J. Mater. Sci. 12 (1977) 157.Google Scholar
  9. 9.
    I. M. Ward, J. Macromol. Sci. B 1 (1967) 667.Google Scholar
  10. 10.
    N. Takeda and S. Ogihara, Compos. Sci. Technol. 52 (1994) 183.Google Scholar
  11. 11.
    A. E. Ennos, Appl. Opt. 5 (1966) 51.Google Scholar
  12. 12.
    M. A. Novice, Br. J. Appl. Phys. 13 (1962) 561.Google Scholar
  13. 13.
    A. E. Hill and G. R. Hoffman, Br. J. Appl. Phys. 18 (1967) 13.Google Scholar
  14. 14.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics” (John Wiley and Sons, New York, 1976).Google Scholar
  15. 15.
    A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13 (1965) 329.Google Scholar
  16. 16.
    H. Leidheiser, Jr. and B. W. Sloope, J. Appl. Phys. 41 (1970) 402.Google Scholar
  17. 17.
    R. L. Grunes, C. D' Antonio and F. K. Kies, ibid. 36 (1965) 2735.Google Scholar
  18. 18.
    A. Caltin and W. P. Walker, ibid. 31 (1960) 2135.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • M Yanaka
    • 1
  • Y Tsukahara
    • 1
  • N Nakaso
    • 1
  • N Takeda
    • 2
  1. 1.Toppan Technical Research InstituteSugito-machi, Kitakatsushika-gun SaitamaJapan
  2. 2.Center for Collaborative ResearchThe University of TokyoMeguro-ku TokyoJapan

Personalised recommendations