Journal of Materials Science

, Volume 33, Issue 4, pp 969–975 | Cite as

Characterization of yttria-stabilized zirconia thin films deposited by electron beam evaporation on silicon substrates

  • M. Hartmanova
  • I. Thurzo
  • M. Jergel
  • J. Bartos
  • F. Kadlec
  • V. Zelezny
  • D. Tunega
  • F. Kundracik
  • S. Chromik
  • M. Brunel


Structure, phase composition and electrical conductivity of thin yttria-stabilized zirconia (YSZ) films deposited by electron beam evaporation on a silicon (1 0 0) substrate at different temperatures i.e. room temperature (r.t.), 700 and 830°C, as well as the quality of the YSZ–Si interface have been investigated. The phase composition was verified by Raman spectroscopy and by infrared (i.r.) transmission measurements. The structure of films changed in agreement with their electrical conductivity depending on the deposition temperature. Both structure and thereby electrical conductivity were influenced by the high concentration of Y2O3 stabilizer used and by the post-deposition thermal treatment of films. The deposition temperature was also important in determining the quality of the YSZ–Si interface and hence the accessible sweep of the surface potential. The capacitance–voltage characteristics of the metal–insulator–semiconductor (MIS) structures incorporating YSZ films measured at r.t. showed hysteresis and positive shifts of the flat-band voltages. © 1998 Chapman & Hall


Electrical Conductivity Phase Composition Raman Spectroscopy Y2O3 Silicon Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. Isaacs, Adv. Ceram. 3 (1981) 406 and references therein.Google Scholar
  2. 2.
    G. Velasco, Solid State Ionics 9/10 (1983) 783.Google Scholar
  3. 3.
    S. Chandra, in “Superionic Solids” (North Holland, Amsterdam, 1981) Ch. 6 and references therein.Google Scholar
  4. 4.
    J. A. Kilner and B. C. H. Steele, in “Non-stoichiometric oxides”, edited by O. T. Sorensen (Academic, London, 1981) p. 233.Google Scholar
  5. 5.
    M. J. Verkerk, A. J. A. Winnubst and A. J. Burggraaf, J. Mater. Sci. 17 (1982) 3113.Google Scholar
  6. 6.
    S. Badwal, ibid. 19 (1984) 1767.Google Scholar
  7. 7.
    S. Chromik, B. Wuyts, I. VÁvra, A. RosovÁ, F. Hanic, S. BeŇaČka and Y. Bruynseraede, Physica C 226 (1994) 153.Google Scholar
  8. 8.
    T. Matthee, J. Wecker, H. Behner and G. Friedel, J. Appl. Phys. Lett. 61 (1992) 1240.Google Scholar
  9. 9.
    I. Thurzo and K. GmucovÁ, Rev. Sci. Instrum. 65 (1994) 2244.Google Scholar
  10. 10.
    B. E. Warren, in “X-ray diffraction” (Addison-Wesley, Reading, MA, 1969).Google Scholar
  11. 11.
    D. W. Liu, C. H. Perry and R. P. Ingel, J. Appl. Phys. 64 (1988) 1413.Google Scholar
  12. 12.
    G. Chiodelli, A. Magistris, M. Scagliotti and F. Parmigiani, J. Mater. Sci. 23 (1988) 1159.Google Scholar
  13. 13.
    C. C. Chen, M. M. Nasrallah and H. U. Anderson, Solid State Ionics 70/71 (1994) 101.Google Scholar
  14. 14.
    B. A. Boukamp, “Equivalent circuit (EQUIVCRT. PAS) users manual” (University of Twente, Department of Chemical Technology, The Netherlands, 1989).Google Scholar
  15. 15.
    T. Norby and M. HartmanovÁ, Solid State Ionics 67 (1993) 57.Google Scholar
  16. 16.
    M. HartmanovÁ, I. TravĚnec, A. A. Urusovskaya, K. Putyera, D. Tunega and I. I. Korobkov, ibid. 76 (1995) 207.Google Scholar
  17. 17.
    J. W. Farmer, C. D. Lamp and J. M. Meese, J. Appl. Phys. Lett. 41 (1982) 1063.Google Scholar
  18. 18.
    T. J. Mego, Rev. Sci. Instrum. 57 (1986) 353.Google Scholar
  19. 19.
    P. E. Bagnoli, C. Ciofi, A. Diligenti, A. Innamorato and A. Nannini, Thin Solid Films 264 (1995) 109.Google Scholar
  20. 20.
    Y. Miyahara, J. Appl. Phys. 71 (1992) 2309.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • M. Hartmanova
    • 1
  • I. Thurzo
    • 2
  • M. Jergel
    • 2
  • J. Bartos
    • 3
  • F. Kadlec
    • 4
  • V. Zelezny
    • 5
  • D. Tunega
  • F. Kundracik
  • S. Chromik
  • M. Brunel
  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
  3. 3.Department of Physics, Faculty of Mathematics and PhysicsComenius UniversityBratislavaSlovakia
  4. 4.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovakia
  5. 5.Laboratoire de Cristallographie du CNRSGrenobleFrance

Personalised recommendations