Plant and Soil

, Volume 204, Issue 1, pp 1–19 | Cite as

rRNA based identification and detection systems for rhizobia and other bacteria

  • Wolfgang Ludwig
  • Rudolf Amann
  • Esperanza Martinez-Romero
  • Wilhelm Schönhuber
  • Stephan Bauer
  • Alexander Neef
  • Karl-Heinz Schleifer


Ribosomal ribonucleic acids are excellent marker molecules for the elucidation of bacterial phylogeny; they also provide useful target sites for identification and detection with nucleic acid probes. Based on the currently available 16S rRNA sequence data, bacteria of the rhizobial phenotype (plant nodulation, nitrogen fixation) are members of three moderately related phylogenetic sub-groups of the α-subclass of the Proteobacteria: i.e. the rhizobia group, the bradyrhizobia group, and the azorhizobia group. All rhizobia, azo-, brady-, meso- and sinorhizobia are closely related to and in some cases phylogenetically intermixed with, non-symbiotic and/or non-nitrogen-fixing bacteria. Especially in the case of Bradyrhizobium japonicum strains, the 16S rRNA sequence data indicate substantial heterogeneity. Specific probe design and evaluation are discussed. A multiprobe concept for resolving specificity problems with group specific probes is presented. In situ identification with group specific probes of rhizobia in cultures as well as rhizobia and cyanobacteria within plant material is shown.

hybridization in situ identification phylogeny probe design rhizobia rRNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann R and Ludwig W 1994 Typing in situ with probes. In Eds. F G Priest, A Ramos-Cormenzana, and B Tindall. pp. 115–135. Bacterial Diversity and Systematics. Plenum press, London.Google Scholar
  2. Amann R I, Krumholz L and Stahl D A 1990 Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770.PubMedGoogle Scholar
  3. Amann R, Springer N, Ludwig W, Görtz HD and Schleifer K H 1991 Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351, 161–164.PubMedGoogle Scholar
  4. Amann R I, Zarda B, Stahl D A and Schleifer K H 1992 Identification of individual prokaryotic cells with enzyme-labeled, rRNAtargeted oligonucleotide probes. Appl. Environ. Microbiol. 58, 3007–3011.PubMedGoogle Scholar
  5. Amann R, Ludwig W and Schleifer K H 1995 Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169.PubMedGoogle Scholar
  6. Amarger N, Macheret V and Laguerre G 1997 Rhizobium gallicum sp. Nov. and Rhizobium giardinii sp. Nov., from Phaseolus vulgaris nodules. Int. J. Syst. Bacteriol. 47, 996–1006.PubMedGoogle Scholar
  7. Auling G, Busse H J, Egli T, El-Barna T and Stackebrandt E. 1993 Description of the gram-negative, oblogately aerobic NTAutilizing bacteria as Chelatobacter heintzii gen. nov., sp. nov. and Chelatococcus asaccharovorans gen. nov., sp. nov. Syst. Appl. Microbiol. 16, 104–112.Google Scholar
  8. Boros I, Kiss A and Venetianer P 1979 Physical map of the seven ribosomal RNA genes of Escherichia coli. Nucl. Acids Res. 6, 1817–1830.PubMedGoogle Scholar
  9. Branlant R C, Krol A, Machatt M A, Pouyet J, Ebel J P, Edwards K and Kössel H 1981 Primary and secondary structures of E. coli MRE 23S rRNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNA. Nucleic Acids Res. 9. 4303–4324.PubMedGoogle Scholar
  10. Breil B T, Borneman J and Triplett E W 1996 A newly discovered gene, tufA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin. J. Bacteriol. 178, 4150–4156.PubMedGoogle Scholar
  11. Brock T D 1987 The study of microorganisms in situ: progress and problems. Symp. Soc. Gen. Microbiol. 41, 1–17.Google Scholar
  12. Brosius J, Dull T J, Sleeter D D and Noller H F 1981 Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148. 107–127.PubMedGoogle Scholar
  13. Carbon P, Ehresmann C, Ehresmann B and Ebel J P 1979 The complete nucleotide sequence of the ribosomal 16S rRNA from Escherichia coli. Experimental details and cistron heterogeneities. Eur. J. Biochem. 100, 399–410.Google Scholar
  14. Chen W, Wang E, Wang S, Li Y, Chen X and Li Y 1995 Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People's Republic of China. Int. J. Syst. Bacteriol. 45, 153–159.PubMedGoogle Scholar
  15. Chen W X, Tan Z Y, Gao J L, Li Y and Wang E T 1997 Rhizobium hainanense sp. Nov., isolated from tropical legumes. Int J. Syst. Bacteriol. 47, 870–873.PubMedGoogle Scholar
  16. De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins M D, Dreyfus B, Kersters K and Gillis M 1994 Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int. J. Syst. Bacteriol. 44, 715–733.Google Scholar
  17. DeLong E F, Wickham G S and Pace N R 1989 Phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 243, 1360–1363.PubMedGoogle Scholar
  18. De Rijk P, Van de Peer Y, Chapelle S and De Wachter R 1994 Database on the structure of large ribosomal subunit RNA. Nucl. Acids Res. 22. 3495–3501.PubMedGoogle Scholar
  19. Dryden S C and Kaplan S 1990 Localization and structure analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucl. Acids Res. 18, 7267–7277.PubMedGoogle Scholar
  20. Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins M D and Gillis M 1994 Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int. J. Syst. Bacteriol. 44, 461–473.PubMedGoogle Scholar
  21. Eardly B D, Young J P W and Selander K 1992 Phylogenetic position of Rhizobium sp. strain Or191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl. Environ. Microbiol. 58, 1809–1815.PubMedGoogle Scholar
  22. Ehrmann M, Ludwig W and Schleifer KH 1994 Reverse dot blot hybridization: a useful method for the direct identification of lactic acid bacteria in fermented food. FEMS Microbiol. Lett. 117, 143–150.PubMedGoogle Scholar
  23. Fleischmann R D, Adams M D, White O, Clayton E F, Krikness A R, Kerlavage A R, Bult C J, Tomb J F, Dougherty B A, Merrick J M, McKenney K, Sutton G, FitzHough W, Fields J D, Gocayne J D, Scott J D, Shirley R, Liu L I, Glodek A, Kelley J M, Weidman J F, Phillips C A, Spriggs T, Hedblom E, Cotton M D, Utterback T R, Hanna M C, Nguyen D T, Saudek D M, Brandon R C, Fine L D, Fritchman J L, Fuhrmann J L, Geoghagen N S M, Gnehm C L, McDonald L A, Small K V, Fraser C M, Smith H O and Venter J C 1995 Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.PubMedGoogle Scholar
  24. Garnier T, Canard B and Cole ST 1991 Cloning, mapping, and molecular characterization of the rRNA operons of Clostridium perfringens. J. Bacteriol. 173, 5431–5438.PubMedGoogle Scholar
  25. Gazumyan A, Schwartz J J, Liveris D and Schwartz I 1994 Sequence analysis of the ribosomal RNA operon of the lyme disease spirochete, Borrelia burgdorferi. Genetics 146, 57–65.Google Scholar
  26. Giovannoni S J, DeLong E F, Olsen G J and Pace N R 1988 Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170, 720–726.PubMedGoogle Scholar
  27. Hernandez-Lucas I, Segovia L, Martinez-Romero E and Pueppke S G 1995 Rhizobium etli, sp. nov. is a branch of American rhizobia with different specificities. Appl. Environ. Microbiol. 61, 2775–2779.PubMedGoogle Scholar
  28. Huber I and Selenska-Pobell 1994 Characterization of Rhizobium galegae by REP-PCR, PFGE and 16S rRNA sequencing. In Symbiotic Nitrogen Fixation. Eds. P H Graham, M J Sadowsky and C P Vance. pp 153–158. Kluwer Academic Publishers, Dordrecht, the Netherlands.Google Scholar
  29. Hugenholtz P, Stackebrandt E and Fuerst J 1994 A phylogenetic analysis of the genus Blastobacter with a view to its future reclassification. Syst. Appl. Microbiol. 17, 51–57.Google Scholar
  30. Jarvis B D W, Van Berkum P, Chen W X, Nour S M, Fernandez M P, Cleyet-Marel J C and Gillis M 1997 Transfer of Rhizobium loti, Rhizobium, huakuii, Rhizobium ciceri, Rhizobium mediterrraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 47, 895–898.Google Scholar
  31. Jordan D C 1982 Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow growing root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32, 136–139.Google Scholar
  32. Kündig C, Göttfert M, Beck C and Hennecke H 1995 Localization and organization of the single rRNA operon of Bradyrhizobium japonicum. J. Bacteriol. 177, 5151–5154.PubMedGoogle Scholar
  33. Lipschutz R J, Morris D, Chee M, Hubbell E, Kozal M J, Shah N, Shen N, Yang R and Fodor S P A 1996 Using oligonucleotide probe arrays to access genetic diversity. BioTechniques 19, 442–447.Google Scholar
  34. Ludwig W 1995 Sequence databases. In Molecular microbial ecology manual. Ed. A Akkermans. pp 1–22. Kluwer Academic Publishers, Dordrecht, the Netherlands.Google Scholar
  35. Ludwig W and Schleifer K H 1994 Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol. Rev. 15, 155–173.PubMedGoogle Scholar
  36. Ludwig W, Rosselló-Mora R, Aznar R, Klugbauer S, Spring S, Reetz K, Beimfohr C, Brockmann E, Kirchhof G, Dorn S, Bachleitner M, Klugbauer N, Springer N, Lane D, Nietupsky R, Weizenegger M, and Schleifer K H 1995 Comparative Sequence Analysis of 23S rRNA from Proteobacteria. Syst. Appl. Microbiol. 18, 164–188.Google Scholar
  37. Ludwig W, Neumaier J, Klugbauer N, Brockmann E, Roller C, Jilg S, Reetz K, Schachtner I, Ludvigsen A, Bachleitner M, Fischer U and Schleifer K H 1993 Phylogenetic relationships of Bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase &bgr;-subunit genes. Ant. Leeuwenh. 64, 285–305.Google Scholar
  38. Maidak B L, Larsen, N, McCaughey, M J, Overbeek, R, Olsen, G J, Fogel, K, Blandy, J, Woese, CR 1994 The ribosomal database project. Nucleic Acids Res 22, 3485–3487.PubMedGoogle Scholar
  39. Manz W, Amann R, Ludwig W, Wagner M and Schleifer K H 1992 Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. System. Appl. Microbiol. 15. 593–600.Google Scholar
  40. Moriya S, Ogasawara N, Yoshikawa H 1985 Structure and function of the region of the replication pairs in the origin region. III. Nucleotide sequence of some 10,000 base origin of the Bacillus subtilis chromosome. Nucleic Acids Res. 13, 2251–2265.PubMedGoogle Scholar
  41. Morrissey D V and Collins M V 1989 Nucleic acid hybridization assays employing dA-tailed capture probes. Single capture methods. Molec. Cell. Probes 3, 189–207.Google Scholar
  42. Mylvaganam S and Dennis P P 1992 Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130, 399–410.PubMedGoogle Scholar
  43. Nour S, Fernandez M P, Normand P and Cleyet-Marel J C 1994 Rhizobium ciceri sp. nov., consisting of strains that nodulate chockpeas (Cicer arietinum L.). Int. J. Syst. Bacteriol. 44, 511–522.PubMedGoogle Scholar
  44. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann R, Ludwig W, Backhaus H 1996 Sequence heterogeneities of genes encoding 16S rRNA in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 19, 5636–5643.Google Scholar
  45. Ogasawara N, Moriya S and Yoshikawa 1993 Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucl. Acids Res. 11, 6301–6318.Google Scholar
  46. Olsen G J, Lane D J Giovannoni S J, Pace N R and Stahl D A 1986 Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40, 337–365.Google Scholar
  47. Perret X and Broughton W, 1998 Rapid identification of Rhizobium strains by targeted PCR fingerprinting. Plant Soil 204, 21–34.Google Scholar
  48. Pinero D, Martinez E and Selander R K 1988 Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 54, 2825–2832.PubMedGoogle Scholar
  49. Poulsen L K, Ballard G and Stahl D A 1993 Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59, 1354–1360.PubMedGoogle Scholar
  50. Rainey F A and Wiegel J 1996 16S ribosomal DNA sequence analysis confirms the close relationship between the genera Xanthobacter, Azorhizobium, and Aquabacter and reveals a lack of phylogenetic coherence among Xanthobacter species. Int. J. Syst. Bacteriol. 46, 607–610.Google Scholar
  51. Rome S, Fernandez M P, Brunel B, Normand P, Cleyet-Marel J C 1996 Sinorhizobium medicae sp. Nov., isolated from annual Medicago spp. Int. J. Syst. Bacteriol. 46, 972–980.PubMedGoogle Scholar
  52. Rosselló-Mora R, Ludwig W and Schleifer K H 1993 Zoogloea ramigera: A phylogenetically diverse species. FEMS Microbiol. Lett. 114, 129–134.Google Scholar
  53. Sawada H, Ieki H, Oyaizu H and Matsumoto S 1993 Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int. J. Sys. Bacteriol. 43, 694–702.Google Scholar
  54. Schaechter M O, Maaloe O and Kjeldgaard N O 1958 Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606.PubMedGoogle Scholar
  55. Schleifer K H, Ludwig W and Amann R 1993 Nucleic acid probes. In Handbook of New Bacterial Systematics. Eds. M Goodfellow and O McDonnell. pp 463–510, Academic Press, London-New York.Google Scholar
  56. Segovia L, Pinero D, Palacios R and Martinez-Romero E 1991 Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol. 57, 426–433.PubMedGoogle Scholar
  57. Sessitsch A, Ramirez-Saad H, Hardarson G, Akkermans A D L and De Vos W 1997 Classification of Austrian rhizobia and the Mexican isolate FL27 obtained from Phaseolus vulgaris L. as Rhizobium gallicum. Int. J. Syst. Bacteriol. 47, 1097–1101.PubMedGoogle Scholar
  58. Shen W F, Squires C and Squires C 1982 Nucleotide sequence of the rrnG ribosomal RNA promotor region of Escherichia coli. Nucleic Acids Res.10, 3303–3313.PubMedGoogle Scholar
  59. Shin Y, Hiraishi A and Sugiyama J 1993 Molecular systematics of the genus Zoogloea and emendation of the genus. Int J. Syst. Bacteriol. 43, 826–831.PubMedGoogle Scholar
  60. So R, Ladha J and Young P W 1994 Photosynthetic symbionts of Aeschynomene spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int. J. Syst. Bacteriol. 44, 392–403.PubMedGoogle Scholar
  61. Spring S, Amann R, Ludwig W, Schleifer K H and Petersen N 1992 Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. System. Appl. Microbiol. 15, 116–122.Google Scholar
  62. Springer N, Ludwig W and Hardarson G 1993 A 23S rRNA targeted specific hybridization probe for Bradyrhizobium japonicum. Syst. Appl. Microbiol. 16, 468–470.Google Scholar
  63. Stackebrandt E and Goebel B M 1994 A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.Google Scholar
  64. Strunk O, Gross O, Reichel B, May M, Hermann S, Stuckmann N, Nonhoff B, Lenke M, Ginhart A, Vilbig A, Ludwig T, Bode A, Schleifer K H and Ludwig W 1998 ARB: a software environment for sequence data. Nucl. Acids Res. (In press).Google Scholar
  65. Takeuchi M, Yamasoto K, Yanagi M, and Yokota A 1995 Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int. J. Syst. Bacteriol. 45, 334–341.PubMedGoogle Scholar
  66. Stahl D A, Flesher B, Mansfield H R and Montgomery L 1988 Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54, 244–252.Google Scholar
  67. Staley J T and Konopka A 1985 Measurement of in situ activities of nonphotosynthetic micororganisms in aquatic and terrestrial habitats. Ann. Rev. Microbiol. 39, 321–346.Google Scholar
  68. Van Berkum P B, Navarro R G and Vargas A 1994 Classification of the uptake hydrogenase-positive (Hup+) bean rhizobia as Rhizobium tropici. Appl. Environ. Microbiol. 60, 554–561.PubMedGoogle Scholar
  69. Van Berkum P B, Beyene D and Eardly B D 1996 Phylogenetic relationship among Rhizobium species nodulating the common bean (Phaseolus vulgaris). Int. J. Syst. Bacteriol. 46, 240–244.PubMedGoogle Scholar
  70. Van de Peer Y, Van den Broeck, De Rijk P, De Wachter R 1994 Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22, 3488–3494.PubMedGoogle Scholar
  71. Van Rossum D, Schuurmans F P, Gillis M, Muyotcha A, Van Verseveld H W, Stouthammer A H and Boogerd F C 1995 Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl. Environ. Microbiol. 61, 1599–1609.PubMedGoogle Scholar
  72. Van Wezel G P, Vijgenboom E and Bosch L 1991 A comparative study of the ribosomal RNA operons of Strepotomyces coelicolor A3(2) and sequence analysis of rRNA. Nucleic Acids Res. 19, 4399–4403 (1991).PubMedGoogle Scholar
  73. Wallner G, Amann R and Beisker W 1993 Optimizing fluorescent in situ hybridization of suspended cells with rRNA-targeted oligonucleotide probes for the flow cytometric identification of microorganisms. Cytometry 14, 136–143.PubMedGoogle Scholar
  74. Willems A and Collins MD 1992 Evidence for a close genealogical relationship between Afipia (the causal organism of cat scratch desease), Bradyrhizobium japonicum and Blastobacter denitrificans. FEMS Microbiol. Lett. 75, 241–246.PubMedGoogle Scholar
  75. Willems A and Collins M D 1993 Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43, 305–313.PubMedGoogle Scholar
  76. Woese C R 1987 Bacterial evolution. Microbiol. Rev. 51, 221–271.PubMedGoogle Scholar
  77. Wong F Y K, Stackebrandt E, Ladha J K, Fleischmann D E, Date R A and Fuerst J A 1994 Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulating bacteria from Aeschynomene species grown in separated geographical regions. Appl. Environ. Microbiol. 60, 940–946.Google Scholar
  78. Xu L M, Ge C, Cui Z, Li J, Fan and Stackebrandt E, 1995, Bradyrhizobium liaoningensis sp. nov. isolated from soybean. Int. J. Syst. Bacteriol. 45, 706–711.PubMedGoogle Scholar
  79. Yanagi M and Yamasato K 1993 Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107, 115–120.PubMedGoogle Scholar
  80. Young J P W, Downer H L and Eardly B D 1991 Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chein reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173, 2271–2277.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Wolfgang Ludwig
    • 1
  • Rudolf Amann
    • 1
  • Esperanza Martinez-Romero
    • 2
  • Wilhelm Schönhuber
    • 1
  • Stephan Bauer
    • 1
  • Alexander Neef
    • 1
  • Karl-Heinz Schleifer
    • 1
  1. 1.Lehrstuhl für MikrobiologieTechnische Universität MünchenMünchenGermany
  2. 2.Centro de Investigación sobre Fijación de NitrogenoCuernavaca, Mor.México

Personalised recommendations