Journal of Materials Science

, Volume 33, Issue 5, pp 1239–1242 | Cite as

Control of the leakage current in SrTiO3 films by acceptor doping

  • S. H Paek
  • E. S Lee
  • S. H Kim
  • J. Y Seong
  • J. P Mah
  • C. S Park
  • J. S Choi
  • J. H Jung
Article

Abstract

Stoichiometric SrTiO3 (STO) films doped with Fe or Cr were prepared by r.f. magnetron sputtering technique. The effects of Fe or Cr doping in the SrTiO3 films were studied on the leakage current property which was discussed by defect chemistry. The experimental results can be explained by a model in which oxygen vacancies are the key defects responsible for the leakage current. Acceptor doping, with a small concentration of Fe or Cr, has led to a substantial improvement to 10−9 order in the leakage current density. Above the concentration of 0.01∼0.02 mol% Fe2O3, Cr2O3, however, as the concentration increased, the leakage current increased. These acceptors in Ti4+ site are expected to electrically compensate for donor species such as oxygen vacancies, thereby reducing the concentration of mobile carriers that contribute to electrical conduction. Consequently, acceptor doped STO films have been shown to be superior to undoped films for applications requiring high leakage resistance, such as dynamic random access memory capacitors. © 1998 Chapman & Hall

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Roy and S. B. Krupanidhi, Appl. Phys. Lett. 62 (1993) 1056.Google Scholar
  2. 2.
    R. Moazzami, C. Hu and W. H. Shepherd, IEEE Trans. Electr. Devices 39 (1992) 2044.Google Scholar
  3. 3.
    T. Kuroiwa, T. Honda, H. Watarai and K. Sato, Jpn J. Appl. Phys. 31 (1992) 3025.Google Scholar
  4. 4.
    H. Y. Lee, K. C. Lee, J. N. Schunke and L. C. Burton, IEEE Trans. Comp. Hybrids Manuf. Technol. CHMT-7 (1984) 443.Google Scholar
  5. 5.
    C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami and C. J. Mogab, J. Appl. Phys. 75 (1994) 1014.Google Scholar
  6. 6.
    R. Waser, J. Amer. Ceram. Soc. 74 (1991) 1934.Google Scholar
  7. 7.
    I. Burn, S. M. Neirman, N. E. Cipollini, J. Mater. Sci. Lett. 4 (1985) 1152.Google Scholar
  8. 8.
    Z. Ji-pin, Z. Mei-yu and W. Hong, Ceram. Int. 16 (1990) 85.Google Scholar
  9. 9.
    D. Dimos, R. W. Schwartz and S. J. Lockwood, J. Amer. Ceram. Soc. 77 (1994) 3000.Google Scholar
  10. 10.
    D. K. Liang, ibid. 76 (1993) 2023.Google Scholar
  11. 11.
    T. Hirano, M. Taga, and T. Kobayashi, Jpn J. Appl. Phys. 32 (1993) L1760.Google Scholar
  12. 12.
    YUHUAN Xu, in “Ferroelectric materials and their application”, (North-Holland, Amsterdam, 1991).Google Scholar
  13. 13.
    G. E. Dieter, in “Mechanical metallurgy”, 3rd edition (McGraw-Hill, 1986) p. 203.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • S. H Paek
    • 1
  • E. S Lee
    • 2
  • S. H Kim
    • 3
  • J. Y Seong
    • 4
  • J. P Mah
  • C. S Park
  • J. S Choi
  • J. H Jung
  1. 1.Department of Materials EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Department of Electronics EngineeringHonam UniversityKwoangjuSouth Korea
  3. 3.Department of Electronics EngineeringHanseo UniversitySeosanSouth Korea
  4. 4.Semiconductor R & D CenterSamsung ElectronicsKihung-eup Kyungki-doSouth Korea

Personalised recommendations