Journal of Philosophical Logic

, Volume 28, Issue 6, pp 617–658

Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege"s Grundgesetze in Object Theory

  • Edward N. Zalta
Article

Abstract

In this paper, the author derives the Dedekind–Peano axioms for number theory from a consistent and general metaphysical theory of abstract objects. The derivation makes no appeal to primitive mathematical notions, implicit definitions, or a principle of infinity. The theorems proved constitute an important subset of the numbered propositions found in Frege"s Grundgesetze. The proofs of the theorems reconstruct Frege"s derivations, with the exception of the claim that every number has a successor, which is derived from a modal axiom that (philosophical) logicians implicitly accept. In the final section of the paper, there is a brief philosophical discussion of how the present theory relates to the work of other philosophers attempting to reconstruct Frege"s conception of numbers and logical objects.

abstract objects cardinal numbers Dedekind Frege Hume"s Principle natural numbers Peano 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, C. A. (1993). Zalta's intensional logic, Philos. Stud. 69(2-3): 221–229.Google Scholar
  2. Boolos, G. (1998). Logic, Logic, and Logic, Harvard University Press, Cambridge, MA.Google Scholar
  3. Boolos, G. (1987). The consistency of Frege's 'Foundations of Arithmetic', in J. Thomson (ed.), On Being and Saying, MIT Press, Cambridge, MA; reprinted in Boolos (1998, pp. 183-201). [Page references are given as 'n/m', where n is a page number (range) in the original and m is the corresponding page number (range) in the reprint.]Google Scholar
  4. Boolos, G. (1986). Saving Frege from contradiction, Proc. Aristotelian Soc. 87 (1986/1987): 137–151; reprinted in Boolos (1998, pp. 171-182). [Page references are given as 'n/m', where n is a page number (range) in the original and m is the corresponding page number (range) in the reprint.]Google Scholar
  5. Burgess, J. (forthcoming). On a consistent subsystem of Frege's Grundgesetze, Notre Dame J. Formal Logic.Google Scholar
  6. Burgess, J. (1984). Review of Crispin Wright's 'Frege's Conception of Numbers as Objects', The Philosophical Review 93/4: 638–640.Google Scholar
  7. Clark, R. (1978). Not every object of thought has being: A paradox in naive predication theory, Nous 12: 181–188.Google Scholar
  8. Demopoulos, W. (1995). Frege's Philosophy of Mathematics, Harvard University Press, Cambridge, MA.Google Scholar
  9. Fine, K. (1994). The limits of abstraction, Unpublished monograph.Google Scholar
  10. Frege, Gottlob, (1884). The Foundations of Arithmetic, translated by J. L. Austin, Blackwell, Oxford; 1974 (second revised edition).Google Scholar
  11. Frege, Gottlob, (1893). Grundgesetze der Arithmetik, Band I, Verlag Hermann Pohle, Jena; reprinted in Hildesheim: Georg Olms Verlagsbuchhandlung, 1962.Google Scholar
  12. Frege, Gottlob, (1903). Grundgesetze der Arithmetik, Band II, Verlag Hermann Pohle, Jena; reprinted in Hildesheim: Georg Olms Verlagsbuchhandlung, 1962.Google Scholar
  13. Hale, B. (1987). Abstract Objects, Blackwell, Oxford.Google Scholar
  14. Hazen, A. (1985). Review of Crispin wright's 'Frege's Conception of Numbers as Objects', Australas. J. Philos. 63(2): 251–254.Google Scholar
  15. Heck, R. (1993). The development of arithmetic in Frege's 'Grundgesetze der Arithmetik', J. Symbolic Logic 58(2): 579–601.Google Scholar
  16. Hodes, H. (1990). Where do natural numbers come from?, Synthese 84: 347–407.Google Scholar
  17. Hodes, H. (1984). Logicism and the ontological commitments of arithmetic, J. Philos. 81(3): 123–149.Google Scholar
  18. Linsky, B. and Zalta, E. (1994). In defense of the simplest quantified modal logic, in J. Tomberlin (ed.), Philosophical Perspectives 8: Logic and Language, Ridgeview, Atascadero.Google Scholar
  19. Linsky, B. and Zalta, E. (1995). Naturalized Platonism vs. Platonized naturalism, J. Philos., XCII(10): 525–555.Google Scholar
  20. Mally, E. (1912). Gegenstandstheoretische Grundlagen der Logik und Logistik, Barth, Leipzig.Google Scholar
  21. McMichael, A. and Zalta, E. (1980). An alternative theory of nonexistent objects, J. Philos. Logic 9: 297–313.Google Scholar
  22. Parsons, C. (1965). Frege's theory of number, Philosophy in America, M. Black (ed.), Cornell University Press, Ithaca, pp. 180–203; reprinted with Postscript in Demopoulos (1995), pp. 182-210.Google Scholar
  23. Parsons, T. (1987). The consistency of the first-order portion of Frege's logical system, Notre Dame J. Formal Logic 28: 161–68.Google Scholar
  24. Rapaport, W. (1978). Meinongian theories and a Russellian paradox, Nous 12: 153–180.Google Scholar
  25. Rosen, G. (1995). The refutation of nominalism(?), Philos. Topics 21(2) (Fall 1993): 149–186.Google Scholar
  26. Russell, B. and Whitehead, A. (1910, 1912, 1913). Principia Mathematica, 3 volumes, Cambridge University Press, Cambridge.Google Scholar
  27. Wright, C. (1983). Frege's Conception of Numbers as Objects, Aberdeen University Press, Aberdeen, Scotland.Google Scholar
  28. Zalta, E. (forthcoming). Neologicism? An ontological reduction of mathematics to metaphysics, Erkenntnis.Google Scholar
  29. Zalta, E. (1997). The modal object calculus and its interpretation, in M. de Rijke (ed.), Advances in Intensional Logic, Kluwer Academic Publishers, Dordrecht, pp. 249–279.Google Scholar
  30. Zalta, E. (1993a). Twenty-five basic theorems in situation and world theory, J. Philos. Logic 22: 385–428.Google Scholar
  31. Zalta, E. (1993b). Replies to the critics, Philos. Stud. 69(2-3): 231–243.Google Scholar
  32. Zalta, E. (1988a). Intensional Logic and the Metaphysics of Intentionality, MIT/Bradford, Cambridge, MA.Google Scholar
  33. Zalta, E. (1988b). Logical and analytic truths that are not necessary, J. Philos. 85(2): 57–74.Google Scholar
  34. Zalta, E. (1983). Abstract Objects: An Introduction to Axiomatic Metaphysics, D. Reidel, Dordrecht.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Edward N. Zalta
    • 1
  1. 1.Center for the Study of Language and InformationStanford UniversityUSA

Personalised recommendations