Journal of Materials Science

, Volume 33, Issue 7, pp 1887–1895 | Cite as

Microstructures and leach rates of glass–ceramic nuclear waste forms developed by partial vitrification in a hot isostatic press

  • S. V Raman


A high level nuclear waste calcine simulant is transformed to a dense and durable glass–ceramic waste form by addition of glass and crystal forming components, and hot isostatic pressing at 1000 °C and 138 MPa. The waste forms are abundantly composed of zircon, beddeyelite, apatite, fluorite, greenockite and boroaluminosilicate glass. The crystal nucleating, glass forming and volatilizing components of the calcine are partitioned into crystalline and glass phases such that 95 wt% of the waste components, including actinide surrogates, stoichiometrically reside in the crystalline phases. This results in a high waste loading of 60–80 wt% calcine in the total glass–ceramic. The partitioning follows the natural association of elements, as a result, species like P avoid the glass phase. Instead glass accommodates the incompatible solutes like Cs. It minimizes porosity and bonds the polyphase ceramic microstructure, which resembles rhyolite or basalt volcanic rocks. Both glass and crystals contribute to high chemical durability, which is degraded when glass devitrifies with lowering of partial liquid viscosity by higher MgO additions. The devitrified phases are layered mica, dendritic nepheline and fibrous alkaline-earth borate. These phases are enriched in the mobile elements of Cs, Na and B, respectively. © 1998 Chapman & Hall


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Pines, Rev. Modern Phys. 50 (1978) S1.Google Scholar
  2. 2.
    R. C. Ewing and W. Lutze, Mater. Res. Soc. Bull. 19 (1994) 16.Google Scholar
  3. 3.
    E. R. Vance, ibid. 19 (1994) 28.Google Scholar
  4. 4.
    S. V. Raman, USDOE–WINCO 1173 (Westinghouse Idaho Nuclear Company, 1993).Google Scholar
  5. 5.
    L. L. Hench, D. E. Clark and J. Campbell, Nuclear Chem. Waste Management 5 (1984) 149.Google Scholar
  6. 6.
    A. E. Ringwood, S. E. Kesson, N. G. Ware, W. Hibberson and A. Major, Nature 278 (1979) 219.Google Scholar
  7. 7.
    H. W. Levi, in “Scientific basis for nuclear waste management” edited by C. J. M. Northrup Jr (Plenum, New York, 1980). p. 21.Google Scholar
  8. 8.
    A. E. Ringwood, V. M. Oversby and W. Sinclair, ibid. p. 273.Google Scholar
  9. 9.
    A. E. Ringwood, S. E. Kesson and N. G. Ware, ibid. p. 265.Google Scholar
  10. 10.
    R. F. Haaker and R. C. Ewing, ibid. p. 281.Google Scholar
  11. 11.
    J. M. Rusin, J. W. Wald and R. O. Lokken, ibid. p. 255.Google Scholar
  12. 12.
    A. B. Harker, in “Radioactive waste forms for the future”, edited by W. Lutze and R. C. Ewing (North-Holland, Amsterdam, 1988) p. 335.Google Scholar
  13. 13.
    A. B. Harker and J. F. Flintoff, in “Scientific basis for nuclear waste management VII”, edited by G.L. McVay (North-Holland, Amsterdam, 1984) p. 513.Google Scholar
  14. 14.
    G. J. McCarthy, J. G. Pepin, D. E. Pfoertsch and D. R. Clark, in “Symposium on ceramics in nuclear waste management”, edited by T.D. Chikalla and J.E. Mendel (Technical Information Center, 1979) p. 315.Google Scholar
  15. 15.
    W. J. Weber, R. C. Ewing and W. Lutze, in “Scientific basis for nuclear waste management XIX”, edited by W. M. Murphy and D. A. Knecht, Materials Research Society Symposium Proceedings, Vol. 412 (Materials Research Society, Pittsburgh, PA 1996) p. 25.Google Scholar
  16. 16.
    B. E. Burakov, E. B. Anderson, V. S. Rovsha, S. V. Ushakov, R. C. Ewing, W. Lutze and W. J. Weber, ibid. p. 33.Google Scholar
  17. 17.
    S. V. Raman, R. Bopp, T. A. Batcheller and Q. Yan, ibid. p. 133.Google Scholar
  18. 18.
    S. V. Raman, in “Glass as a waste form and vitrification technology: an internation workshop”, (Board on Radioactive Waste Management, National Research Council, Washington, DC, 1996) p. 84.Google Scholar
  19. 19.
    G. B. Mellinger and J. L. Daniel, USDOE Report PNL–4955–1, (Pacific Northwest Laboratory, 1983).Google Scholar
  20. 20.
    C. M. Jantzen, N. E. Bibler, D. C. Beam, C. L. Crawford and M. A. Pickett, USDOE Report WSRC–TR–93–181, (Westinghouse Savannah River Co.,1990).Google Scholar
  21. 21.
    J. R. Fowler and M. J. Plodinec, in Proceedings of the Third Annual International High Level Radioactive Waste Management (IHLRWM) Conference, Las Vegas, NV (1992) p. 904.Google Scholar
  22. 22.
    V. M. Goldschmidt, “Geochemistry” (Oxford University Press, 1958) p. 432.Google Scholar
  23. 23.
    S. V. Raman, in “Proceedings of Fifth Annual International High Level Radioactive Waste Management (IHLRW) Conference, Las Vegas, NV (1994) p. 1124.Google Scholar
  24. 24.
    S. V. Raman, in Proceedings of the Sixth Annual International High Level Radioactive Waste Management (IHLRWM) Conference, Las Vegas, NV (1995) p. 594.Google Scholar
  25. 25.
    MCC, “Nuclear waste materials handbook”, (Materials Characterization Center, Hanford, WA), Report No. DOE/TIC-11400 (1983).Google Scholar
  26. 26.
    E. D. Hespe, Atomic Energy Rev. 9 (1971) 1.Google Scholar
  27. 27.
    I. S. E. Carmichael, F. J. Turner and J. Verhoogen, “Igneous petrology” (McGraw-Hill, New York, 1974) p. 739.Google Scholar
  28. 28.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics” (Wiley, New York, 1976) p. 1032.Google Scholar
  29. 29.
    W. A. Deer, R. A. Howie and J. Zussman, “An introduction to the rock-forming minerals” (Longman, London, 1967) p. 528.Google Scholar

Copyright information

© Chapman and Hall 1998

Authors and Affiliations

  • S. V Raman
    • 1
  1. 1.Nuclear Engineering Department, Idaho National Engineering and Environmental and Environmental LaboratoryLockheed Martin Idaho TechnologiesIdaho FallsUSA

Personalised recommendations