Marine Geophysical Researches

, Volume 19, Issue 6, pp 553–567 | Cite as

Propagation of the Southwest Indian Ridge at the Rodrigues Triple Junction

  • Daniel Sauter
  • Véronique Mendel
  • Céline Rommevaux-Jestin
  • Philippe Patriat
  • Marc Munschy


The analysis of multibeam bathymetric data of the Southwest Indian Ridge(SWIR) domain between the triple junction traces from 68° E to theRodrigues Triple Junction (RTJ; 70° E) reveals the evolution of thisridge since magnetic anomaly 4 (8 Ma). Image processing has been used toshow that the horizontal component of strain due to a network of normal stepfaults increases dramatically between 69°30′ E and the RTJ. Thisarea close to the RTJ is characterized by a deep graben at the foot of thetriple junction trace on the African plate and by a narrow fault-boundedridge that joins an offset of the trace on the Antarctic plate. In thatarea, spreading is primarily amagmatic and dominated by tectonic extensionprocesses. To the west of 69°30′ E, some lobate bathymetricfeatures atop of a large topographic high suggest volcanic constructions.Between 68°10′ E and 69°25′ E the southern flank of theSWIR domain is wider than the northern one and is characterized by a series of 7 en echelon bathymetric highs similar in size,shape and orientation to the one centred at 69°30′E near the present-day triple junction. Their en echelon organization along the triple junction trace on the Antarctic plate and the typical lack of conjugated parts on the northern flank show that these bathymetric highs have been shifted to the south by successive northward relocalisations of the SWIR rifting zone. This evolution results in the asymmetric spreading of the SWIR in the survey area. The off-axis bathymetric highs connect to the offsets of the triple junction trace on the Antarctic plate when the Southeast Indian Ridges lightly lengthenstoward the northwest and the triple junction is relocated to the north. We propose that the SWIR lengthens toward the northeast with two propagation modes: 1) a continuous and progressive propagation with distributed deformation in preexisting crust of the Central Indian Ridge, 2) a discontinuous propagation with focusing of the deformation in a rift zone when the triple junction migrates rapidly to the north. The modes of propagation of the SWIR are related to different localisation and distribution of strain which are in turn controlled by changes of the triple junction configurations due to propagation, recession or a symmetric spreading on the Central and Southeast Indian Ridges.

Southwest Indian Ridge Rodrigues Triple Junction bathymetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allerton, S., Murton, B. J., Searle, R. C., and Jones, M., 1995, Extensional Faulting and Segmentation of the Mid-Atlantic Ridge North of the Kane Fracture Zone, Mar. Geophys. Res. 17, 37–61.Google Scholar
  2. Barone, A. and Ryan, W. B. F., 1988, Along Axis Variations within the Plate Boundary Zone of the Southern Segment of the Endeavour Ridge, J. Geophys. Res. 93, 7856–7868.Google Scholar
  3. Boulanger, M. O., Boulanger, D., Munschy, M., Sauter, S., and Tissot, J.-D., 1992, Cetis: A New Computer Software to Display Marine Geophysical Data, Improve Navigation Using Seabeam Crossings, Grid Data and Process Images, XVII European Geophysical Society, Edinburgh, April 1992.Google Scholar
  4. Bourillet, J. F., Edy, C., Rambert, F., Satra, C., and Loubrieu, B., 1996, Swath Mapping System Processing: Bathymetry and Cartography, Mar. Geophys. Res. 18, 487–506.Google Scholar
  5. Cande, S. C. and Kent, D. V., 1995, Revised Calibration of the Geomagnetic Polarity Timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res. 100, 6093–6095.Google Scholar
  6. Courtillot, V., 1982, Propagating Rifts and Continental Breakup, Tectonics 1, 239–250.Google Scholar
  7. Cowie, P. A., Scholz, C. H., Edwards, M., and Malinverno, A., 1993, Fault Strain and Seismic Coupling on Mid-Ocean Ridges, J. Geophys. Res. 98, 17911–17920.Google Scholar
  8. Fuji, T., Yamashita, S., Ishii, T., Tainosho, Y., Langmuir, C. H., Nakada, S., Matsumoto, S., Harada, Y., Takahashi, N., and Hirose, K., 1995, Petrological Sampling at the Rodriguez Triple Junction in the Indian Ocean, in Tamaki, K. and Fujimoto, H. (eds.), R/V Hakuro-Maru KH93-3 Cruise Report, Ocean Research Institute, University of Tokyo, pp. 68–87.Google Scholar
  9. Grindlay, N. R. and Fox, P. J., 1993, Lithospheric Stresses Associated with Nontransform Offsets of the Mid-Atlantic Ridge: Implications from a Finite Element Analysis, Tectonics 12, 982–1003.Google Scholar
  10. Honsho, C., Tamaki, K., and Fujimoto, H., 1996, Three-Dimensional Magnetic and Gravity Studies of the Rodriguez Triple Junction in the Indian Ocean, J. Geophys. Res. 101, 15837–15848.Google Scholar
  11. Humler, E., 1989, Etude pétrologique de basaltes océaniques (Océan Indien, MerRouge, Océan Atlantique) et continentaux (Trapps du Deccan, Inde): fonctionnement des réservoirs magmatiques, Thèse de doctorat, Univ. Louis Pasteur, Strasbourg., 511 pp.Google Scholar
  12. Lewis, T. and Fisher, N. I., 1982, Graphical Methods for Investigating the Fit of a Fisher Distribution to Spherical Data, Geophys. J. R. Astron. Soc. 69, 1–13.Google Scholar
  13. Macdonald, K. C. and Luyendyk, B. P., 1977, Deep-Tow Studies of the Structure of the Mid-Atlantic Ridge Crest Near Lat. 37° N, Geol. Soc. Am. Bull. 88, 621–636.Google Scholar
  14. Malinverno, A. and Cowie, P. A., 1993, Normal Faulting and Topographic Roughness on Mid-Ocean Ridge Flanks, J. Geophys. Res. 98, 17921–17939.Google Scholar
  15. McKenzie, D., 1986, The Geometry of Propagating Rifts. Earth and Planet. Sci. Lett. 77, 176–186.Google Scholar
  16. Mendel, V., 1997, Processus d'accrétion au niveau des dorsales ultralentes: l'exemple de la dorsale sud-ouest indienne, Thèse de doctorat, Univ. Louis Pasteur, Strasbourg, 231 pp.Google Scholar
  17. Mendel, V. and Sauter, D., 1997, Seamount Volcanism at the Super Slow-Spreading Southwest Indian Ridge Between 57° E and 70° E, Geology 25, 99–102.Google Scholar
  18. Mendel, V., Sauter, D., Parson, L., and Vanney, J.-R., 1997, Segmentation and Morphotectonic Variations Along a Super Slow-Spreading Center: The Southwest Indian Ridge (57° E-70° E), Mar. Geophys. Res. 19, 505–533 (this issue).Google Scholar
  19. Mitchell, N. C., 1991a, Distributed Extension at the Indian Ocean Triple Junction, J. Geophys. Res. 96, 8019–8043.Google Scholar
  20. Mitchell, N. C., 1991b, An Evolving Ridge System Around the Indian Ocean Triple Junction, Mar. Geophys. Res. 13, 173–201.Google Scholar
  21. Mitchell, N. C. and Parson, L. M. 1993, The Tectonic Evolution of the Indian Ocean Triple Junction, Anomaly 6 to Present, J. Geophys. Res. 98, 1793–1812.Google Scholar
  22. Munschy, M. and Schlich, R., 1989, The Rodriguez Triple Junction (Indian Ocean): Structure and Evolution for the Past One Million Years, Mar. Geophys. Res. 11, 1–14.Google Scholar
  23. Patriat, P., 1987, Reconstitution de l'évolution du système de dorsales de l'océan Indien par la méthode de la cinématique des Plaques, Mém. Hors-Série, T.A.A.F., 308 pp.Google Scholar
  24. Patriat, P. and Courtillot, V., 1984, On the Stability of Triple Junctions and Its Relation to Episodicity in Spreading, Tectonics 3, 317–332.Google Scholar
  25. Patriat, P. and Parson, L., 1989, A Survey of the Indian Ocean Triple Junction Trace Within the Antarctic Plate Implications for the Junction Evolution Since 15 Ma, Mar. Geophys. Res. 11, 89–100.Google Scholar
  26. Patriat, P., Sauter, D., Munschy, M., and Parson, L., 1997, A Survey of the Southwest Indian Ridge Axis Between Atlantis II FZ and the Indian Ocean Triple Junction: Regional Setting and Large Scale Segmentation, Mar. Geophys. Res. 19, 457–480 (this issue).Google Scholar
  27. Patriat, P. and Segoufin, J., 1988, Reconstruction of the Central Indian Ocean, Tectonophysics 155, 211–234.Google Scholar
  28. Rommevaux-Jestin, C., Deplus, C., and Patriat, P., 1997, Mantle Bouguer Anomaly Along an Ultra Slow-Spreading Ridge: Implications for Accretionary Processes and Comparison with Results from Central Mid-Atlantic Ridge, Mar. Geophys. Res. 19, 481–503 (this issue).Google Scholar
  29. Sauter, D., Nafziger, J.-M., Whitechurch, H., and Munschy, M., 1996, Segmentation and Morphotectonic Variations of the Central Indian Ridge (21°10′ S-22°25′ S), J. Geophys. Res. 101, 20233–20256.Google Scholar
  30. Sauter, D. and Mendel, V., 1997, Variations of Backscatter Strength Along the Super Slow-Spreading Southwest Indian Ridge Between 57° E and 70° E, Mar. Geol. 140, 237–248.Google Scholar
  31. Sclater, J. G., Fisher, R. L., Patriat, P., Tapscott, C., and Parsons, B., 1981, Eocene to Recent Development of the Southwest Indian Ridge, a Consequence of the Evolution of the Indian Ocean Triple Junction, Geophys. J. R. Astr. Soc. 64, 587–604.Google Scholar
  32. Sempéré, J. C., Lin, J., Brown, H. S., Schouten, H., and Purdy, G. M., 1993, Segmentation and Morphotectonic Variations Along a Slow-Spreading Center: The Mid-Atlantic Ridge (24°00′ N-30°40′ N), Mar. Geophys. Res. 15, 153–200.Google Scholar
  33. Shaw, P. R. and Smith, D. K., 1990, Robust Description of Statistically Heterogeneous Seafloor Topography Through Its Slope Distribution, J. Geophys. Res. 95, 8705–8722.Google Scholar
  34. Smith, D. K. and Shaw, P. R., 1989, Using Topographic Slope Distributions to Infer Seafloor Patterns, IEEE J. Oceanic Eng. 14, 338–347.Google Scholar
  35. Solomon, S. C., Huang, P. Y., and Meinke, L., 1988, The Seismic Moment Budget of Slowly Spreading Ridges, Nature 334, 58–60.Google Scholar
  36. Thatcher, W. and Hill, D. P., 1995, A Simple Model for the Fault-Generated Morphology of Slow-Spreading Mid-Oceanic Ridges, J. Geophys. Res. 100, 561–570.Google Scholar
  37. Wessel, P. and Smith, W. H. F., 1991, Free Software Helps Map and Display Data, Eos Trans. AGU 72, 441.Google Scholar
  38. West, B. P., Fujimoto, H., H onsho, C., Tamaki, K., and Sempéré, J.-C., 1995, A Three-Dimensional Gravity Study of the Rodrigues Triple Junction and Southeast Indian Ridge. Earth Planet. Sci. Lett. 133, 175–184.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Daniel Sauter
    • 1
  • Véronique Mendel
    • 1
  • Céline Rommevaux-Jestin
    • 2
  • Philippe Patriat
    • 3
  • Marc Munschy
    • 1
  1. 1.Ecole et Observatoire des Sciences de la TerreInstitut de Physique du GlobeStrasbourg CedexFrance
  2. 2.Laboratoire de Pétrologie, CNRS, URA 736Université P. et M. CurieParis Cedex 05France
  3. 3.Institut de Physique du Globe de ParisParis Cedex 05France

Personalised recommendations