Plant and Soil

, Volume 203, Issue 1, pp 145–158 | Cite as

Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.)

  • Frank M. Thomas
  • Günter Hartmann


At three sites in northwestern Germany, which represent the centres of the present oak damage, root distribution and biomass beneath healthy and damaged trees of mature pedunculate oak (Quercus robur L.; Neuenburg site) and sessile oak (Q. petraea [Matt.] Liebl.; Lappwald and Sprakensehl sites) were investigated, and soil texture, bulk density, duration of waterlogging periods and the water available in the mineral soil were determined. For Neuenburg and Sprakensehl, the available soil water was related to leaf water parameters determined in a separate investigation. At the clayey and hydromorphic sites of Neuenburg and Lappwald, the measurements were performed in each one healthy and one damaged part of the site, which differed in the number of oaks with crown damage. In the damaged stand of Neuenburg, the clay content of the subsoil was higher than in the healthy stand, and the soil water availability was reduced especially in dry periods. Compared to healthy oaks of the healthy stand, the density of finest plus fine roots as well as the biomasses of finest roots were lower beneath damaged oaks of the damaged stand. With decreasing relative available soil water (actually available water in relation to water available at the saturation state), the relative leaf water content decreased in damaged, but not in healthy oaks. At Lappwald, similar differences in soil water availability between the healthy and the damaged stand were found, but had no effect on the distribution or biomass of the roots. At the sandy site (Sprakensehl), the available soil water decreased drastically during a dry period, and predawn leaf water potentials of both healthy and damaged oaks declined with decreasing relative available soil water. However, the damaged oaks were not inferior to the healthy ones with respect to root density and biomass. It is concluded that, in the damaged stand of Neuenburg, the high clay content of the subsoil, which results in prolonged periods of waterlogging, in sharp changes from waterlogging to drought and decreased water availability in dry periods, is the reason for the reduced biomass and density of roots of the pedunculate oak. Thus, in northwestern Germany, unfavourable soil water relations are considered as a factor contributing to crown damage of pedunculate oak at hydromorphic sites, but not to damage of sessile oak.

clay content mineral soil oak decline Quercus root biomass root density water availability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann J and Hartmann G 1992 Kronenschäden in Eichenbeständen Niedersachsens nach Farbinfrarot-Luftbildern aus den Jahren 1988/89. Forst Holz 47(15), 452–460.Google Scholar
  2. Arbeitskreis Standortskartierung 1996 Forstliche Standortsaufnahme. 5th edn. IHW-Verlag, Eching/München. 352 p.Google Scholar
  3. Becker M and Lévy G 1982 Le dépérissement du chêne en forêt de Tronçais — les causes écologiques. Ann. Sci. For. 39, 439–444.Google Scholar
  4. Becker M and Lévy G 1986 Croissance radiale comparée de chênes adultes (Quercus robur L. et Q. petraea (Matt.) Liebl.) sur sol hydromorphe acide: effet du drainage. Acta Oecol./Oecol. Plant. 7(21), 121–143.Google Scholar
  5. Böhm W 1979 Methods of Studying Root Systems. Springer, Berlin. 188 p.Google Scholar
  6. Bréda N, Granier A, Barataud F and Moyne C 1995 Soil water dynamics in an oak stand. I. Soil moisture, water potentials and water uptake by roots. Plant Soil 172, 17–27.Google Scholar
  7. Caldwell M M and Virginia R A 1989 Root systems. In Plant Physiological Ecology. Eds. R W Pearcy, J R Ehleringer, H A Mooney and P W Rundel. pp 367–398. Chapman & Hall, London, New York.Google Scholar
  8. Cochard H, Bréda N, Granier A and Aussenac G 1992 Vulnerability to air embolism and hydraulic architecture of three European oak species (Quercus petraea [Matt.] Liebl., Q. pubescens Willd., Q. robur L.). Ann. Sci. For. 49, 225–233.Google Scholar
  9. Deutscher Wetterdienst 1992–1994 Monatlicher Witterungsbericht. Deutscher Wetterdienst, Offenbach.Google Scholar
  10. Ellenberg H 1996 Vegetation Mitteleuropas mit den Alpen. 5th edn. Ulmer, Stuttgart. 1095 p.Google Scholar
  11. Hartmann G 1996 Ursachenanalyse des ‘Eichensterbens’ in Deutschland — Versuch einer Synthese bisheriger Befunde. Mitt. Biol. Bundesanst. Land-u. Forstw. Berlin-Dahlem 318, 125–151.Google Scholar
  12. Hartmann G and Blank R 1993 Etiology of oak decline in northern Germany. History, symptoms, biotic and climatic predisposition, pathology. In Recent Advances in Studies on Oak Decline. Eds. N Luisi, P Lerario and A Vannini. pp 277–284. Dipartimento di Patologia vegetale, Bari/Italy.Google Scholar
  13. Hartmann G, Blank R and Lewark S 1989 Eichensterben in Norddeutschland — Verbreitung, Schadbilder, mögliche Ursachen. Forst Holz 44(18), 475–487.Google Scholar
  14. Jung T, Blaschke H and Neumann P 1996 Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Path. 26, 253–272.Google Scholar
  15. Köstler J N, Brückner E and Bibelriether H 1968 Die Wurzeln der Waldbäume. Parey, Hamburg, Berlin. 284 p.Google Scholar
  16. Krahl-Urban J 1959 Die Eichen. Parey, Hamburg, Berlin. 288 p.Google Scholar
  17. Kuntze H, Roeschmann G and Schwerdtfeger G 1994 Bodenkunde. 5th edn. Ulmer, Stuttgart. 424 p.Google Scholar
  18. Lévy G, Becker M and Duhamel D 1992 A comparison of the ecology of pedunculate and sessile oaks: radial growth in the centre and northwest of France. For. Ecol. Manage. 55, 51–63.Google Scholar
  19. Lévy G, Le Goff N, Girard S and Lefevre Y 1993 Potentialités de l'alisier torminal sur sols à hydromorphie temporaire: comparaison avec les chênes pédonculé et sessile. Rev. For. Franc. 45(3), 243–252.Google Scholar
  20. MacFall J S, Johnson G A and Kramer P J 1991 Comparative water uptake by roots of different ages in seedlings of loblolly pine (Pinus taeda L.). New Phytol. 119, 551–560.Google Scholar
  21. Pallardy S G, Pereira J S and Parker W C 1991 Measuring the state of water in tree systems. In Techniques and Approaches in Forest Tree Ecophysiology. Eds. J P Lassoie and T M Hinckley. pp 27–76. CRC Press, Boca Raton, Ann Arbor, Boston.Google Scholar
  22. Schachtschabel P, Blume H-P, Brümmer G, Hartge K-H and Schwertmann U 1992. Scheffer/Schachtschabel — Lehrbuch der Bodenkunde. 13th edn. Enke, Stuttgart. 491 p.Google Scholar
  23. Thomas F M and Büttner G 1998 Nutrient relations in healthy and damaged stands of mature oaks on clayey soils: two case studies in northwestern Germany. For. Ecol. Manage. 108: 301–319.Google Scholar
  24. Thomas F M and Hartmann G 1996 Soil and tree water relations in mature oak stands of northern Germany differing in the degree of decline. Ann. Sci. For. 53, 697–720.Google Scholar
  25. Vogt K A and Persson H 1991 Measuring growth and development of roots. In Techniques and Approaches in Forest Tree Ecophysiology. Eds. J P Lassoie and T M Hinckley. pp 477–501. CRC Press, Boca Raton, Ann Arbor, Boston.Google Scholar
  26. Waring R H and Schlesinger W H 1985 Forest Ecosystems: Concepts and Management. Academic Press, Orlando. 340 p.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Frank M. Thomas
    • 1
  • Günter Hartmann
    • 2
  1. 1.Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abt. Ökologie und ÖkosystemforschungUniversität GöttingenGöttingenGermany
  2. 2.Niedersächsische Forstliche Versuchsanstalt, Abt. WaldschutzGöttingenGermany

Personalised recommendations