Plant and Soil

, Volume 194, Issue 1–2, pp 193–203 | Cite as

Nif gene transfer and expression in chloroplasts: Prospects and problems

  • Ray Dixon
  • Qi Cheng
  • Gui-Fang Shen
  • Anil Day
  • Mandy Dowson-Day
Article

Abstract

The engineering of plants capable of fixing their own nitrogen is an extremely complex task, requiring the co-ordinated and regulated expression of 16 nif genes in an appropriate cellular location. We suggest that plastids may provide a favourable environment for nif gene expression provided that the nitrogenase enzyme can be protected from oxygen damage. Using the non-heterocystous cyanobacteria as a model, we argue that photosynthesis could be temporally separated from nitrogen fixation in chloroplasts by restricting nitrogenase synthesis to the dark period. We report preliminary data on the introduction and expression of one of nitrogenase components, the Fe protein, in transgenic tobacco and Chlamydomonas reinhardtii. Finally we discuss potential avenues for further research in this area and the prospects for achieving the ultimate goal of expressing active nitrogenase in cereal crops such as rice.

chloroplast genetic engineering nif genes nitrogenase plant transformation plastid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen R M, Homer M J, Chatterjee R, Ludden P W, Roberts G P 1993 Dinitrogenase and MgATP-dependent maturation of apo-dinitrogenase from Azotobacter vinelandii J. Biol. Chem. 268 23670–23674Google Scholar
  2. Bauer C, Bollivar D and Suzuki J 1993 Genetic analysis of photopigment biosynthesis in eubacteria: a guiding light for algae and plants. J.Bacteriol 175, 3919–3925Google Scholar
  3. Berman J, Gershoni J M and Zamir A 1985 Expression of nitrogen fixation genes in foreign hosts. assembly of nitrogenase Fe protein in Escherichia coli and in yeast. J. Biol. Chem. 260, 5240–5243Google Scholar
  4. Burke D, Hearst J and Sidow A 1993 Early evolution of photo-synthesis: clues from nitrogenase and chlorophyll iron proteins. Proc.Natl. Acad. Sci USA 90, 7134–7148Google Scholar
  5. Choquet Y, Rahaire M, Girard-Bascou J, Erickson J and Rochaix J D 1992 A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J. 11, 1697–1704Google Scholar
  6. Datta S K, Datta K, Soltanifa N, Donn G and Potrykus I 1992 Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG mediated transformation of protoplasts. Plant Mol. Biol. 20, 619–629Google Scholar
  7. Dean D, Bolin J and Zheng L 1993 Nitrogenase metalloclusters: structures,organisation and synthesis. J. Bacteriol. 175, 6731– 6744Google Scholar
  8. Dean D R and Jacobson M R 1992 Biochemical Genetics of Nitrogenase. In Biological Nitrogen Fixation. Eds. G Stacey, R H Burris and H J Evans. pp. 763–834. Chapman and Hall, New York.Google Scholar
  9. Dixon R and Postgate J R 1972 Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli. Nature 237, 102–103Google Scholar
  10. Dowson-Day M, Ashurst J, Mathias S, Watts J, Wilson T and Dixon R 1993 Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol. Biol. 23, 97–109Google Scholar
  11. Dowson-Day M J, Ashurst J L, Watts J, Dixon R A and Merrick M J 1991 Studies of the potential for expression of nitrogenase Feprotein in cells of higher plants. InNitrogen Fixation: Proceedings of the 5th International Symposium on Nitrogen Fixation with Non-Legumes. Eds. M Polsinelli, R Materassi and M Vincenzini. pp 659–669. Kluwer, Dordrecht.Google Scholar
  12. Eady R R 1995 The enzymology of biological nitrogen fixation. Science Progress 78, 1–17Google Scholar
  13. Flint, D H 1996 Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. J. Biol. Chem. 271, 16068–16074.Google Scholar
  14. Fu W, Jack R F, Morgan T, Dean D and Johnson M 1994 nifU product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry 33, 13455–13463Google Scholar
  15. Fujita Y, Matsumoto H, Takahashi Y and Matsubara H 1993 Identifi-cation of a nifDK-like gene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol. 34, 305–314Google Scholar
  16. Fujita Y, Takahashi Y, Chuganji M and Matsubara M 1992 The nifH-like (frxC) gene is inolved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell Physiol. 33, 81–92Google Scholar
  17. Fujita Y, Takahashi Y, Kohchi T, Ozeki H, Ohyama K and Matsubara H 1989 Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha. Plant Mol.Biol. 13, 551–561Google Scholar
  18. Gallon J 1992 Tansley review no.44. Reconciling the incompatible: nitrogen fixation and oxygen. New Phytol. 122, 571–609Google Scholar
  19. Gallon J and Chaplin A 1988 Recent studies of nitrogen fixation by non-heterocystous cyanobacteria. In Nitrogen fixation:hundred years after. Eds. H Bothe, F de Bruijn and W Newton. pp 183– 203. Fischer, Stuttgart.Google Scholar
  20. Gallon J, Reade J, Dougerty L, Pederson D and Rogers L 1995 Degradation of nitrogenase in Gleothece. In Nitrogen fixation: fundamentals and application. Eds. I A Tichonovich, N Provorov, V Romanov and W Newton. pp. 230. Kluwer Academic Publishers, Dordrecht.Google Scholar
  21. Goldschmitt-Clermont M 1991 Transgenic expression of the amino-glycoside adenine transferase in the chloroplast: aselectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res. 19, 4083–4089Google Scholar
  22. Govezensky D, Greener T, Segal G and Zamir A 1991 Involvement of GroEL in nif gene regulation and assembly. J. Bacteriol. 173, 6339–6346Google Scholar
  23. Hidalgo E and Demple B 1996 Activation of SoxR-dependent transcription in vitro by non catalytic or NifS-mediated assembly of [2Fe-2S] clusters into Apo-SoxR1. J. Biol. Chem. 271, 7269Google Scholar
  24. Hill S 1992 Physiology of nitrogen fixation in free-living heterotrophs. In Biological nitrogen fixation. Eds. G Stacey, R H Burris and H J Evans. pp. 87–134. Chapman and Hall, New York.Google Scholar
  25. Hill S, Austin S, Eydmann T, Jones T and Dixon R 1996 Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. Proc. Natl. Acad. of Sci. USA 93, 2143–2148Google Scholar
  26. Howard J and Rees D 1994 Nitrogenase: a nucleotide-dependent molecular switch. Ann.Rev. Biochem. 63, 235–264Google Scholar
  27. Howard K S, McLean P A, Hansen F B, Lemley P V, Koblan K S and Orme-Johnson W J 1986 Klebsiella pneumoniae nifM gene product is required for stabilization and activation of nitrogenase iron protein in Escherichia coli. J. Biol. Chem. 261, 772–778Google Scholar
  28. Khoroshilova N, Beinert H and Kiley P 1995 Association of a polynuclear Fe-S center with a mutant FNR protein enhances DNA binding. Proc. Natl. Acad. Sci. USA 92, 2499–2503Google Scholar
  29. Kuras R and Wollman F-A 1994 The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. EMBO J. 13, 1019–1027Google Scholar
  30. Kustu S, Santero E, Keener J, Popham D and Weiss D 1989Expression of σ54(ntrA)-dependent genes is probably united by a common mechanism}. Microbiol.Revs. 53, 367–376Google Scholar
  31. Li J, Goldshmitt-Clermont M and Timko M 1993 Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5, 1817–1829Google Scholar
  32. Lidholm J and Gustafsson P 1991 Homologues of the green alga gidA gene and the liverwort frxC gene are present on the chloroplast genome of conifers. Plant Mol. Biol. 17, 787–798Google Scholar
  33. Lin W, Anuratha C S, Datta K, Potrykus I, Muthukrishnan S and Datta S K 1995 Genetic engineering of rice for resistance to sheath blight. Bio/technology 13, 686–692Google Scholar
  34. Liu B and Troxler R F 1996 Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNApolymerase sigma factor in Cyanidium caldarium. Proc.Natl. Acad. Sci. USA 93, 3313–3318Google Scholar
  35. Liu X-Q, Hui X and Huang C 1993 Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol. Biol. 23, 297–308Google Scholar
  36. McBride K, Schaaf D, Daley M and Stalker D 1994 Controlled expression of plastid transgenes in plants based on nuclear DNA encoded and plastid-targeted T7 RNA polymerase. Proc. Natl. Acad. Sci USA 91, 7301–7305Google Scholar
  37. Merrick M 1992 Regulation of nitrogen fixation genes in bacteria. In Biological nitrogen fixation. Eds. G Stacey, R H Burris and H J Evans. pp 835–876. Chapman and Hall, New York.Google Scholar
  38. Merrick M J 1993 Organisation and regulation of nitrogen fixation genes. In New Horizons in Nitrogen Fixation, Proceedings of the 9th International Congress on Nitrogen Fixation. Eds. R Palacios, J Mora and W E Newton. pp. 43–54. Kluwer Academic, Dordrecht.Google Scholar
  39. Merrick M and Dixon R 1984 Why don’t plants fix nitrogen. Trends Biotech. 2, 162Google Scholar
  40. Moshiri F, Kim J, Fu C and Maier R 1994 The FeSII protein ofAzotobacter vinelandii is not essential for aerobic nitrogen fixation but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol. Microbiol. 14, 101–114Google Scholar
  41. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H 1986 Chloroplast gene organisation deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 572–574Google Scholar
  42. Paul W and Merrick M 1989 The roles of the nifW, nifZ and nifM genes of Klebsiella pneumoniae in nitrogenase biosynthesis. Eur. J. Biochem. 178, 675–682Google Scholar
  43. Postgate J 1981 Discussion. In The manipulation of genetic symbiosis in plant breeding. Eds. H Reese, R Riley, R Breese and C Law. pp 198–199. The Royal Society, London.Google Scholar
  44. Postgate J 1992 The Leeuwhenhoek lecture 1992. Bacterial evolution and the nitrogen fixing plant. Phil. Trans. R. Soc. Lond. B 338, 409–416Google Scholar
  45. Reddy P and Ladha J 1995 Can symbiotic nitrogen fixation be extended to rice ? In Nitrogen fixation: fundamentals and application. Eds. I A Tichonovich, N Provorov, V Romanov and W Newton. pp 629–633. Kluwer Academic Publishers, Dordrecht.Google Scholar
  46. Richard M, Tremblay C and Bellemare G 1994 Chloroplast genomes of Gingko biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase. Current Genet 26, 159–165Google Scholar
  47. Suzuki J and Bauer C 1992 Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chl (frxC). Plant Cell 4, 929–940Google Scholar
  48. Tanaka K, Oikawa K and Takahashi H 1996 Nuclear Encoding of a Chloroplast RNA Polymerase Sigma Subunit in a Red Alga. Science 272, 1932–1935Google Scholar
  49. Thorneley R N F and Ashby G A 1989 Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem. J. 261, 181–187Google Scholar
  50. Thorneley R N F and Lowe D J 1983 Nitrogenase of Klebsiella pneumoniae. Kinetics of the dissociation of oxidised iron protein from molybdenum-iron protein: identification of the rate-limiting step for substrate reduction. Biochem. J. 215, 393–403Google Scholar
  51. Viitanen P V, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer G H, A G and Soll J 1995 Functional characterization of the higher plant chloroplast chaperonins. J. Biol. Chem. 270, 18158–18164Google Scholar
  52. Yang Z and Bauer C 1990 Rhodobacter capsulatus genes involved in the early steps of the bacteriochlorophyll pathway. J. Bacteriol. 172, 5001–5010Google Scholar
  53. Zheng L and Dean D 1994 Catalytic formation of a nitrogenase iron-sulphur cluster. J. Biol. Chem. 269, 18723–18726Google Scholar
  54. Zheng L, White R, Cash V, Jack R and Dean D 1993 Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc. Natl. Acad. Sci. USA 90, 2754–2758Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Ray Dixon
    • 1
  • Qi Cheng
    • 1
  • Gui-Fang Shen
    • 2
  • Anil Day
    • 3
  • Mandy Dowson-Day
    • 3
  1. 1.Nitrogen Fixation LaboratoryJohn Innes Centre, Colney LaneNorwichUK
  2. 2.Biotechnology Research CenterChinese Academy of Agricultural SciencesBeijingChina
  3. 3.School of Biological SciencesUniversity of ManchesterManchesterUK and

Personalised recommendations