Advertisement

Marine Geophysical Researches

, Volume 19, Issue 3, pp 267–281 | Cite as

A Robust Rapid-Response Probe for Measuring Bottom-Hole Temperatures in Deep-Ocean Boreholes

  • E. E. Davis
  • H. Villinger
  • R. D. MacDonald
  • R. D. Meldrum
  • J. Grigel
Article

Abstract

A new probe has been constructed for making temperature measurements 1.1 m ahead of the bit in Ocean Drilling Program (ODP) boreholes. Temperatures are recorded at positions 1 and 11 cm above the tip of the probe. The combination of the dual temperature records and accelerometer data provides valuable information about disturbances that may affect the quality of measurements. Long battery life, and memory access via an external communications port, allow service-free operation for the full duration of typical drilling legs. Temperature resolution varies over the 110 K measurement range, from nominally 1 mK from -5 to 20 °C, to about 10 mK at 105 °C. The small (8 mm) diameter of the probe tip allows rapid thermal equilibration after penetration. The shallow (2.5°), continuous taper of the lower part of the probe serves to reduce the tendency of the formation to be cracked when the tool is pushed into the formation. It is sufficiently robust, however, to survive penetration into highly consolidated sediment and occasional contact with igneous rock. The tool was used for a total of 44 bottom-hole temperature measurements between 38 and 573 meters below seafloor (mbsf) during Leg 168, as well as for several logging runs in open holes. We anticipate adding a port in the tip to permit measurement of formation fluid pressure, and to enhance the utility of the tool for logging temperature profiles in open holes.

Heat flow hydrogeology instrumentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, R. O., 1988, ODP In Situ Fluid Sampling and Measurement: A New Wire line Tool, Proc. Ocean Drill. Prog., Init.Res. 110, 55–63.Google Scholar
  2. Bullard, E. C., 1954, The Flow of Heat Through the Floor of the Atlantic Ocean, Proc. Roy. Soc. Lond., A 222, 408–429.Google Scholar
  3. Davis, E. E., Fisher, A. T., Firth, J. V., and the Shipboard Scientific Party, 1997, Proc. ODP, Init. Repts., 168: College Station, TX (Ocean Drilling Program) (in press).Google Scholar
  4. Erickson, A. J., 1984, Theory, Techniques, and Interpretation of Down hole Temperature Measurements, in Heath, R. R. (ed.), Sedimentlogy, Physical Properties, and Geochemistry in the Initial Reports of the Deep Sea Drilling Project: An Overview, National Oceanic and Atmospheric Administration, Boulder, CO, pp. 105–121.Google Scholar
  5. Erickson, A. J., 1973, Initial Report on Down hole Temperature and Shipboard Thermal Conductivity Measurements, Leg 19, Init. Rep. Deep Sea Drill. Proj. 19, 643–656.Google Scholar
  6. Erickson, A. J., Von Herzen, R. P., Sclater, J.G., Girdler, R.W., Mar-shall, B.V., and Hyndman, R.D., 1975,GeothermalMeasurements in Deep-Sea Drill Holes, J. Geophys. Res. 80, 2515–2528.Google Scholar
  7. Fisher, A. T., Becker, K., and Davis, E. E., 1997, The Permeability of Young Oceanic Crust East of Juan de Fuca Ridge Determined Using Borehole Thermal Measurements, Geophys. Res. Lett. (in press).Google Scholar
  8. Horai, K. and Von Herzen, R. P., 1985, Measurement of Heat Flow on Leg 86 of the Deep Sea Drilling Project, Init. Rep. Deep Sea Drill. Proj. 86, 759–777.Google Scholar
  9. Hyndman, R.D., Davis, E. E., and Wright, J. A., 1979, The Measure-ment of Marine Geothermal Heat Flow by a Multipenetration Probe with Digital Acoustic Telemetry and in-situ Conductivity, Marine Geophys. Res. 4, 181–205.Google Scholar
  10. Hyndman, R. D., Langseth, M. G., and Von Herzen, R. P., 1987, Deep Sea Drilling Project Geothermal Measurements: A Review, Rev. Geophys. 25, 1563–1582.Google Scholar
  11. Lister, C. R. B., 1979. The Pulse-Probe Method of Conductivity Measurement, Geophys. J. Roy. Astr. Soc. 57, 451–461.Google Scholar
  12. Sass, J. H., Kennelly, J. P., Jr., Wendt, W. E., Moses, T. H. Jr., and Ziagos, J. P., 1981, In-Situ Determination of Heat Flow in Unconsolidated Sediments, Geophysics 46, 76–83.Google Scholar
  13. Villinger, H. and Davis, E. E., 1987, A New Reduction Algorithm for Marine Heat Flow Measurements, J. Geophys. Res. 92, 12846–12856.Google Scholar
  14. Von Herzen, R. P., Fiske, R. J., and Sutton, G., 1971, Geothermal Measurements on Leg 8, Init.Res. Deep Sea Drill. Proj. 8, 837–850.Google Scholar
  15. Von Herzen, R. P. and Maxwell, A. E., 1959, The Measurement of Thermal Conductivity of Deep-Sea Sediments by a Needle Probe Method, J. Geophys. Res. 64, 1557–1563.Google Scholar
  16. Yokota, T., Kinoshita, H., and Uyeda, S., 1980, New DSDP (Deep Sea Drilling Project) Downhole Temperature Probe Utilizing Di-gital Self-Recording System with IC RAM (Memory) Elements, Bull. Earthquake Res. Inst. Univ. Tokyo 55, 75–88.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • E. E. Davis
    • 1
  • H. Villinger
    • 2
  • R. D. MacDonald
    • 1
  • R. D. Meldrum
    • 1
  • J. Grigel
    • 2
  1. 1.Geological Survey of CanadaPacific Geoscience CentreSidneyCanada
  2. 2.Fachbererich GeowissenschaftenUniversitat BremenBremenGermany

Personalised recommendations