Journal of Engineering Mathematics

, Volume 33, Issue 2, pp 157–174 | Cite as

Travelling waves in a differential flow reactor with simple autocatalytic kinetics

  • J.H. Merkin
  • R.A. Satnoianu
  • S.K. Scott
Article

Abstract

A simple prototype model for a differential flow reactor in which the possible initiation and propagation of a reaction-diffusion-convection travelling-wave solution (TWS) in the simple isothermal autocatalytic system A+mB→ (m+1)B, rate kabm (m ≥ 1) is studied with special attention being paid to the most realistic cases (m=1,2). The physical problem considered is such that the reactant A (present initially at uniform concentration) is immobilised within the reactor. A reaction is then initiated by allowing the autocatalyst species to enter and to flow through the reaction region with a constant velocity. The structure of the permanent-form travelling waves supported by the system is considered and a solution obtained valid when the flow rate (of the autocatalyst) is very large. General properties of the corresponding initial-value problem (IVP) are derived and it is shown that the TWS are the only long-time solutions supported by the system. Finally, these results are complemented with numerical solutions of the IVP which confirm the analytical results and allow the influence of the parameters of the problem not accessible to the theoretical analysis to be determined.

waves reaction-diffusion autocatalytic chemical instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kapral and K. Showalter (eds), Chemical Waves and Patterns. Dordrecht: Kluwer Academic Publishers (1995) 640 pp.Google Scholar
  2. 2.
    M.A. Marek, S.C. Müller, T. Yamaguchi and K. Yoshikawa (eds), Dynamism and Regulation in Nonlinear Chemical Systems. Amsterdam: North-Holland (1995) 317 pp. See also the special issue of Physica D84 (1995).Google Scholar
  3. 3.
    B.R. Johnson and S.K. Scott, New approaches to chemical patterns. Chem. Soc. Rev.25 (1996) 265-273.Google Scholar
  4. 4.
    A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. Roy. Soc.B327 (1952) 37-72.Google Scholar
  5. 5.
    J.D. Murray, Mathematical Biology. Berlin: Springer-Verlag (1990) 767 pp.Google Scholar
  6. 6.
    V. Castets, E. Dulos, J. Boissonade and P. DeKepper, Experimental evidence of a sustained standing Turing-type non-equilibrium chemical pattern. Phys. Rev. Lett.64 (1990) 2953-2965.Google Scholar
  7. 7.
    I.R. Epstein and I. Lengyel, Turing structures. Progress toward a room temperature, closed system. Physica D84 (1995) 1-11.Google Scholar
  8. 8.
    A.B. Rovinsky and M. Menzinger, Chemical instability induced by a differential flow. Phys. Rev. Letters69 (1992) 1193-1196.Google Scholar
  9. 9.
    A.B. Rovinsky and M. Menzinger, Self-organisation induced by the differential flow of activator and inhibitor. Phys. Rev. Letters70 (1993) 778-781.Google Scholar
  10. 10.
    M. Menzinger and A.B. Rovinsky, The differential flow instabilities. In: R. Kapral and K. Showalter (eds), Chemical Waves and Patterns. Dordrecht: Kluwer Academic Publishers (1995) 365-397.Google Scholar
  11. 11.
    X.G. Wu, S. Nakata, M. Menzinger and A.B. Rovinsky, Differential flow instability in a tubular flow reactor: its convective nature. J. Phys. Chem.100 (1996) 15810-15814.Google Scholar
  12. 12.
    S. Ponce Dawson, A. Lawniczak and R. Kapral, Interactions of Turing and flow-induced chemical instabilities. J. Chem. Phys.100 (1994) 5211-5218.Google Scholar
  13. 13.
    R.A. Satnoianu, J.H. Merkin and S.K. Scott, Differential flow induced instability in a cubic autocatalator system. To appear in J. Eng. Math..Google Scholar
  14. 14.
    M.J. Metcalf, J.H. Merkin and S.K. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis. Proc. R. Soc. Lond. A447 (1994) 155-174.Google Scholar
  15. 15.
    A. Saul and K. Showalter, Propagation reaction-diffusion fronts. In: R.J. Field and M. Burger (eds), Oscillations and Travelling Waves in Chemical Systems. New York: Wiley (1985) 681 pp.Google Scholar
  16. 16.
    R.J. Field and R.M. Noyes, Oscillations in chemical systems. IV Limit cycle behaviour in a model of a real chemical reaction, J. Chem. Soc.60 (1974) 1877-1884.Google Scholar
  17. 17.
    J.H. Merkin, D.J. Needham and S.K. Scott, A simple model for sustained oscillations in isothermal chain-branching or autocatalytic reactions in a well stirred, open system. Proc. R. Soc. Lond. A398 (1985) 81-116.Google Scholar
  18. 18.
    E.E. Selkov, Self-oscillations in glycolysis, 1. A simple kinetic model. Eur. J. Biochem.4 (1968) 79-86.Google Scholar
  19. 19.
    J. Billingham and D.J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves. Phil. Trans. R. Soc. Lond. A334 (1991) 1-25.Google Scholar
  20. 20.
    J. Billingham and D.J. Needham, A note on the properties of a family of travelling-wave solutions arising in cubic autocatalysis. Dynamics and Stability of Systems, 6 (1991) 33-49.Google Scholar
  21. 21.
    J. Billingham and D.J. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. III: Large time development in quadratic autocatalysis. Quart. Appl. Math.L2 (1992) 343-372.Google Scholar
  22. 22.
    J.H. Merkin and D.J. Needham, Propagating reaction-diffusion waves in a simple isothermal quadratic autocatalytic chemical system. J. Eng. Math.23 (1989) 343-356.Google Scholar
  23. 23.
    J.H. Merkin, D.J. Needham and S.K. Scott, The development of travelling waves in a simple isothermal chemical system. I. Quadratic autocatalystis with linear decay. Proc. R. Soc. Lond. A424 (1989) 187-209.Google Scholar
  24. 24.
    D.J. Needham and J.H. Merkin, The development of travelling waves in a simple isothermal chemical system with general orders of autocatalysis and decay. Proc. R. Soc. Lond. A337 (1991) 261-274.Google Scholar
  25. 25.
    J.H. Merkin and D.J. Needham, Reaction-diffusion waves in an isothermal chemical system with general orders of autocatalysis and spatial dimension. ZAMP44 (1993) 707-721.Google Scholar
  26. 26.
    J. Guckenheimer and P. Holmes, Nonlinear Oscillators, Dynamical Systems and Bifurcation of Vector Fields. New York: Springer-Verlag, second printing (1986) 459 pp.Google Scholar
  27. 27.
    J.H. Merkin, D.J. Needham and S.K. Scott, Coupled reaction-diffusion waves in an isothermal autocatalytic chemical system. IMA J. Appl. Math.50 (1993) 43-76.Google Scholar
  28. 28.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations. NewYork: Springer-Verlag second edition (1994) 632 pp.Google Scholar
  29. 29.
    P. Grindrod, Patterns and Waves(The Theory and Applications of Reaction-Diffusion Equations). Oxford: Clarendon Press (1991) 239 pp.Google Scholar
  30. 30.
    D. Henry, Geometrical Theory of Semilinear Parabolic Equations. New York: Springer-Verlag, Lectures Notes in Math. 840 (1981) 348 pp.Google Scholar
  31. 31.
    F.B. Weissler, Single point blow-up of semilinear initial value problem. J. Diff. Eqs.55 (1984) 204-224.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • J.H. Merkin
    • 1
  • R.A. Satnoianu
    • 1
    • 2
  • S.K. Scott
    • 2
  1. 1.Department of Applied Mathematical StudiesUniversity of LeedsLeedsU.K
  2. 2.School of ChemistryUniversity of LeedsLeedsU.K

Personalised recommendations