Quality and Quantity

, Volume 31, Issue 4, pp 361–384 | Cite as

Causal inference, time and observation plans in the social sciences

  • Hans-Peter Blossfeld
  • Götz Rohwer


This paper first discusses the role of time in causal inferences in the social sciences. It then compares in detail how panel and event history observation designs affect causal analysis. It shows that the collection of event history data is an extremely useful approach for uncovering causal relationships or mapping out systems of causal relations. It concludes that event history data provide an optimal basis for a causal understanding of social processes because they allow the social researcher to relate the change in future outcomes to conditions in the past at each point in time.


Social Science Causal Relationship History Data Causal Relation Social Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalen, O. O. (1987). Dynamic modelling and causality, Scand. Actuarial Journal 12: 177-190.Google Scholar
  2. Arminger, G., Clogg, C. C. & Sobel, M. E. (eds) (1995). Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York: Plenum Press.Google Scholar
  3. Arminger, G. and Müller, F. (1990): Lineare Modelle zur Analyse von Paneldaten. Opladen: Westdeutscher Verlag.Google Scholar
  4. Barron, D. N. (1993). The analysis of count data: overdispersion and autocorrelation, Sociological Methodology 22: 179-220.Google Scholar
  5. Blossfeld, H.-P. (1986). Career opportunities in the Federal Republic of Germany: a dynamic approach to the study of life-course, cohort, and period effects, European Sociological Review 2: 208-225.Google Scholar
  6. Blossfeld, H.-P. (1987). Labor market entry and the sexual segregation of careers in the FRG, American Journal of Sociology 93: 83-118.Google Scholar
  7. Blossfeld, H.-P. (1989). Kohortendifferenzierung und Karriereprozeß. Eine Längsschnittstudie über die Veränderung der Bildings-und Brerufschancen im Lebenslauf. Frankfurt a. M. and New York: Campus Verlag.Google Scholar
  8. Blossfeld, H.-P. (ed.) (1995). Family Formation in Modern Societies and the New Role of Women. Boulder: Westview Press.Google Scholar
  9. Blossfeld, H.-P. (1996). Macro-sociology, rational choice theory, and time. A theoretical perspective on the empirical analysis of social processes, European Sociological Review 12: 81-206.Google Scholar
  10. Blossfeld, H.-P., DeRose, A., Hoem, J. & Rohwer, G. (1995). Education, modernization, and the risk of marriage disruption in Sweden, West Germany, and Italy, pp. 200-222, in: K. Oppenheim Mason & An-Magritt Jensen (eds), Gender and Family Change in Industrialized Countries. Oxford: Clarendon Press.Google Scholar
  11. Blossfeld, H.-P. & Hakim, C. (eds) (1997) Between Equalization and Marginalization. Part-time Working Women in Europe and the United States of America. Oxford: Oxford University Press (forthcoming).Google Scholar
  12. Blossfeld, H.-P., Hamerle, A. & Mayer, K. U. (1989). Event History Analysis. Hillsdale (N.J.): Erlbaum.Google Scholar
  13. Blossfeld, H.-P. & Huinink, J. (1991). Human capital investments or norms of role transition? How women's schooling and career affect the process of family formation, American Journal of Sociology 97: 143-168.Google Scholar
  14. Blossfeld, H.-P., Manting, D. & Rohwer, G. (1993). Patterns of change in family formation in the Federal Republic of Germany and the Netherlands: some consequences for solidarity between generations, pp. 175-196, in H. A. Becker & P. L. J. Hermkens (eds), Solidarity of Generations. Demographic, Economic and Social Change, and its Consequences. Amsterdam: Thesis Publishers.Google Scholar
  15. Blossfeld, H.-P. & Rohwer, G. (1995). Techniques of Event History Modeling. New Approaches to Causal Analysis. Mahweh (N.J.): Erlbaum.Google Scholar
  16. Campbell, D. T. & Stanley, J. C. (1963). Experimental and Quasi-Experimental Designs for Research. Chicago: Rand McNally.Google Scholar
  17. Chamberlain, G. (1984). Panel data, pp. 1247-1317, in Z. Griliches & M. D. Intriligator (eds), Handbook of Econometrics, vol II. Amsterdam: North-Holland.Google Scholar
  18. Clogg, C. C. & Arminger, G. (1993). On strategy for methodological analysis, Sociological Methodology 23: 57-74.Google Scholar
  19. Coleman, J. S. (1968). The mathematical study of change, pp. 428-478 in M. Hubert and A. B. Blalock (eds), New York: McGraw-Hill.Google Scholar
  20. Coleman, J. S. (1981). Longitudinal Data Analysis. New York: Basic Books.Google Scholar
  21. Coleman, J. S. (1990). Foundations of Social Theory. Cambridge: Harvard University Press.Google Scholar
  22. Coleman, J.S. & Hao, L. (1989). Linear systems analysis: macrolevel analysis with microlevel data, Sociological Methodology 19: 395-422.Google Scholar
  23. Davis, J. A. (1978). Studying categorical data over time, Social Science Research 7: 151-179.Google Scholar
  24. Dex, S. (ed.) (1991). Life and Work History Analyses: Qualitative and Quantitative Developments. London and New York: Routledge.Google Scholar
  25. Duncan, O. D. (1966). Methodological issues in the analysis of social mobility, pp. 51-97 in N. Smelser & S. M. Lipset (eds), Social Structure and Social Mobility, Chicago: Aldine.Google Scholar
  26. Engel, U. and Reinecke, J. (1994). Panelanalyse. New York: De Gruyter.Google Scholar
  27. Freeman, R. A. (1991). Statistical analysis and shoe leather, Sociological Methodology 21: 291-313.Google Scholar
  28. Goldthorpe, J. H. (1996). The quantitative analysis of large-scale data-sets and rational action theory: for a sociological alliance, European Sociological Review 12: 109-126.Google Scholar
  29. Goodman, L. A. (1973). Causal analysis of data from panel studies and other kind of surveys. American Journal of Sociology 78: 1135-1191.Google Scholar
  30. Hannan, M. T. and Tuma, N. B. (1979). Methods for temporal analysis, Ann. Rev. Sociol. 5: 303-328.Google Scholar
  31. Holland, P. W. (1986). Statistics and causal inference, Journal of the American Statistical Association 81, 945-960.Google Scholar
  32. Hsiao, C. (1986). Analysis of Panel Data. Cambridge: Cambridge University Press.Google Scholar
  33. Hunt, M. (1985). Profiles of Social Research. The Scientific Study of Human Interactions. New York: Russell Sage Foundation.Google Scholar
  34. Jöreskog, K. G. & Sörbom, D. (1993). LISREL 8. Structural Equation Modeling with the SIMPLIS Command Language. Chicago: Scientific Software International.Google Scholar
  35. Kelly, J. R. & McGrath, J. E. (1988). On Time and Method. Newbury Park: Sage.Google Scholar
  36. Lazarsfeld, P. F. (1948). The use of panels in social research, Proceedings of the American Philosophy of Sociology 92: 405-410.Google Scholar
  37. Lazarsfeld, P. F. (1972). Mutual relations over time of two attributes: a review and integration of various approaches, pp. 461-480 in M. Hammer, K. Salzinger & S. Sutton (eds), Psychopathology. New York: Basic Books.Google Scholar
  38. Lieberson, S. (1985). Making it Count. The Improvement of Social Research and Theory. Berkeley: University of California Press.Google Scholar
  39. Magnusson, D. & Bergmann, L. R. (eds) (1990). Data Quality in Longitudinal Research. Cambridge: Cambridge University Press.Google Scholar
  40. Magnusson, D., Bergmann, L. R. & Törestad, B. (eds), (1991). Problems and Methods in Longitudinal Research: Stability and Change. Cambridge: Cambridge University Press.Google Scholar
  41. Marini, M. M. & Singer, B. (1988). Causality in the social sciences, pp. 347-409 in C. C. Clogg (ed.), Sociological Methodology, Vol. 18.Google Scholar
  42. Mayer, K. U. (ed.) (1990). Lebensverläufe und sozialer Wandel. Sonderheft 31. Kölner Zeitschrift für Soziologie und Sozialpsychologie. Opladen: Westdeutscher Verlag.Google Scholar
  43. Mayer, K. U. & Brückner, E. (1989). Lebensverläufe und Wohlfahrtsentwicklung. Konzeption, Design und Methodik der Erhebung von Lebensverläufen der Geburtsjahrgänge 1929–31, 1939–41, 1949–51, Materialien aus der Bildungsforschung, No. 35, Max-Planck-Institut für Bildungsforschung, Berlin.Google Scholar
  44. Mayer, K. U. & Tuma, N. B. (1990). Event History Analysis in Life Course Research Madison (W.I.): University of Wisconsin Press.Google Scholar
  45. Medical Research Council (1992). Review of Longitudinal Studies. London (mimeo).Google Scholar
  46. Sandefur, G. D & Tuma, N. B. (1987). How data type affects conclusions about individual mobility, Social Science Research 16: 301-328.Google Scholar
  47. Shingles, R. D. (1976). Causal inference in cross-lagged panel analysis, Political Methodology 3: 95-133.Google Scholar
  48. Singer, B. & Spilerman, S. (1976a). The representation of social processes by Markov models, American Journal of Sociology 82: 1-54.Google Scholar
  49. Singer, B. & Spilerman, S. (1976b). Some methodological issues in the analysis of longitudinal surveys, Annals of Economic and Social Measurement 5: 447-474.Google Scholar
  50. Tuma, N. B. & Hannan, M T. (1984). Social Dynamics. Models and Methods. New York: Academic Press.Google Scholar
  51. Yamaguchi, K. (1991). Event History Analysis. Newbury Park: Sage.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Hans-Peter Blossfeld
    • 1
  • Götz Rohwer
    • 1
  1. 1.Institut für Empirische und Angewandte Soziologie (EMPAS), Fachbereich 8University of BremenBremenGermany

Personalised recommendations