Advertisement

Plant and Soil

, Volume 199, Issue 1, pp 111–116 | Cite as

Studies of pathogenic and antagonistic microfungal populations and their potential interactions in the mycorrhizoplane of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) on acidified and limed plots

  • X.M. Qian
  • A. El-Ashker
  • I. Kottke
  • F. Oberwinkler
Article

Abstract

Recent tree decline was hypothesized to be connected to root damage caused by soil acidification and increased frequency of pathogenic root colonizing fungi. The rhizoplane is constituted by the mycorrhizal sheath and a high diversity of microfungi, some of which are known to behave antagonistically against pathogens. Disturbance of the balance between pathogens and antagonists by soil acidification may endanger the health of tree roots. Liming may stabilize the interactions. The microfungal populations connected to the mycorrhizoplane of Norway spruce (Picea abies) and beech (Fagus sylvatica) were, therefore, investigated on experimental Norway spruce plots that had been treated with acidified water or were limed. Beech presented the original forest and was left untreated. Eight microfungal species known as either pathogenic or antagonistic, Trichoderma viride, T. hamatum, T. polysporum, Cylindrocarpon destructans, Sesquicillium candelabrum, Mycelium radicis atrovirens, Tolyplocladium geodes and Oidiodendron maius, were isolated from the mycorrhizoplanes and their abundance in the five different plots compared. Acidification enhanced the frequency of Mycelium radicis atrovirens and Oidiodendron maius but reduced Trichoderma viride. Liming promoted Sesquicillium candelabrum and Cylindrocarpon destructans. Detailed analysis of the population patterns indicated that changes in the frequency of a particular fungal species may not only be caused by shift of chemical soil factors but also by antagonistic interactions between the microfungi, thus reducing pathogenic attacks on rootlets.

acidification antagonism liming microfungi mycorrhizoplane pathogens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agerer R 1987–1993 Colour Atlas of Ectomycorrhizae. Einhorn Verlag E. Dietenberger, München.Google Scholar
  2. Bååth E, Lundgren B and Söderström B 1984 Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microb. Ecol. 10, 197–203.Google Scholar
  3. Cooke R J and Baker K F 1983 The nature and practice of biological control of plant pathogens. Am. Phytopath. Soc. St. Paul. 539 pp.Google Scholar
  4. Courtois H 1983 Die Pathogenese des Tannensterbens und ihre natürlichen Mechanismen. Allg. Forst-u. J. Ztg. 154, 93–97.Google Scholar
  5. Danielson R M 1971 The ecology and physiology of Trichoderma in forest soils. Ph. D. Thesis, North Carolina State Univ. Raleigh.Google Scholar
  6. Dennis C and Webster J 1971a Antagonistic properties of species-groups of Trichoderma. I Production of non-volatile antibiotics. Trans. Br. Mycol. Soc. 57, 25–39.Google Scholar
  7. Dennis C and Webster J 1971b Antagonistic properties of species-groups of Trichoderma II. Production of volatile antibiotics. Trans. Brit. Mycol. Soc. 57, 41–48.Google Scholar
  8. Dennis C and Webster J 1971c Antagonistic properties of species-groups of Trichoderma. III. Hyphal interaction. Trans. Br. Mycol. Soc. 57, 363–369.Google Scholar
  9. Domsch K-H, Gams W and Anderson T 1980 Compendium of Soil Fungi. Vol. I & II. Academic Press, London.Google Scholar
  10. Domsch K-H and Gams W 1970 Pilze aus Agrarböden. Gustav Fischer, Stuttgart.Google Scholar
  11. El-Ashkar A (1993) Mikropilzflora des Bodens und der Rhizoplane von Mykorrhizen eines Buchenwaldes und zweier Fichtenbestände. Diss. Tübingen.Google Scholar
  12. Forbrig R 1987 Anatomische und histologische Untersuchungen an pilzinfizierten Fichtenkeimlingen (Picea abies Karst.). Allg. Forst-u. Jagdztg. 158, 222–229.Google Scholar
  13. Gams W, van der Aa H A, van Plaats-Niterink A J, Samson R A and Stalpers J A 1980 CBS-Course of Mycology. Centraalbureau voor Schimmelcultures, Baarn, 109 p.Google Scholar
  14. Girlanda M and Luppi-Mosca A M 1992 In vitro antagonistic interactions between saprotrophic microfungi associated with the roots of Pinus halepensis and Rosmarinus officinalis. Allionia 31, 67–76.Google Scholar
  15. Harley J L and Waid J S 1955 A method of studying active mycelia on living roots and other surfaces in the soil. Trans. Br. Mycol. Soc. 38, 104–118.Google Scholar
  16. Hart J H 1965 Root rot of oak associated with Cylindrocarpon radicicola. Phytopathology, 55, 1154–1155.Google Scholar
  17. Kattner D 1989 Zur Pathogenität von Trichoderma hamatum (Bon.) Bain. an Fichtenkeimlingen (Picea abies L. Karst). Allg. Forst-u. Jagdzeitung 161, 1–6.Google Scholar
  18. Kluge E 1966 Pathogenität gegenüber Kiefernsämlingen und Toxinbildung bei Cylindrocarpon radicicola Wr. Phytopathology 55, 368–371.Google Scholar
  19. Komatsu M 1976 Studies on Hypocrea, Trichoderma, and allied fungi antagonistic to shiitake, Lentinus edodes (Berk.) Sing. Report of the Tottori Mycol. Inst. 13, 1–113.Google Scholar
  20. Kowalski S 1973 Mycorrhiza forming properties of various strains of the fungus Mycelium radicis atrovirens Melin. Bull. Acad. Polon. Sci., Ser. Sci. Biol. 21, 767–770.Google Scholar
  21. Kowalski S 1980 Influence of soil fungi community in selected mountain stands on the development of Cylindrocarpon destructans (Zins.) Scholt. Acta Soc. Bot. Pol. 49(4), 487–492.Google Scholar
  22. Kreutzer K 1989 The impact of forest management practices on the soil acidification in established forests. Air Pollution Research Report 13, Commission of EC, 75–90.Google Scholar
  23. Kreutzer K 1995 Effects of forest liming on soil processes. Plant Soil 168–169, 447–470.Google Scholar
  24. Kreutzer K and Weiss T 1998 The Höglwald field experiments — aims, concept and basic data. Plant Soil 199, 1–10.Google Scholar
  25. Lundgren B, Bååth E and Söderström B E 1978 Antagonist effects of Tolyplocladium species. Trans. Brit. Mycol. Soc. 70, 305–307.Google Scholar
  26. Makeschin F 1991 Auswirkungen von saurer Beregnung und Kalkung auf die Regenwurmfauna (Lumbricidae: Oligochaeta) im Fichtenaltbestand Höglwald. In Ökosystemforschung Höglwald. Eds K Kreutzer and A Göttlein. Forstw. Cbl. 39, Paul Parey, Hamburg u. Berlin. pp 117–127.Google Scholar
  27. Manka K M 1970 Parasitäre Sämlingskrankheiten der Forstbäume und die Bodenpilze. Zbl. Bak. Abt. II. 124, 450–459.Google Scholar
  28. Manka K, Gierczak M and Prusinkiewicz Z 1968 Zamieranie siewek cisa (Taxus baccata L.) Wietzchlesie na tle zepotow saprofitycznych grzybow rodowiska glebowego. Poznan. Tow. Przyj. Nauk. Roln. Kom. Nauk. Lesn. 25, 177–195.Google Scholar
  29. Molin N, Persson M and Persson S 1960 Root parasites on forest tree seedlings. Medd. Stat. Skogsforskn. Inst. Stockholm 49, 1–16.Google Scholar
  30. Oliveira V L and Garbaye J 1989 Les microorganismes auxiliaires de l'établissement des symbioses mycorrhiziennes. Eur. J. For. Pathol. 19, 54–66.Google Scholar
  31. Qian X M, Kottke I and Oberwinkler F 1998 Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst stand. Plant Soil 199, 99–109.Google Scholar
  32. Ritter T, Weber G, Kottke I and Oberwinkler F 1989 Zur Mykorrhizaentwicklung von Fichten und Tannen in geschädigten Beständen. Biologie in unserer Zeit 19, 9–15.Google Scholar
  33. Schönhar S 1982 Untersuchungen über das Vorkommen pilzlicher Parasiten an Feinwurzeln der Douglasie. Allg. Forst-u. J. Ztg. 153, 205–208.Google Scholar
  34. Schönhar S 1984 Infektionsversuche an Fichten-und Kiefernkeimlingen mit aus faulen Feinwurzeln von Nadelbäumen häufig isolierten Pilzen. Allg. Forst-u. J-Ztg. 155, 191–192.Google Scholar
  35. Schönhar S 1986 Infektionsversuche an Fichten-und Kiefernkeimlingen mit aus kranken Fichtenfeinwurzeln isolierten Pilzen. Allg. Forst-u. J.-Ztg 157, 97–98.Google Scholar
  36. Schönhar S 1987 Untersuchungen über das Vorkommen pilzlicher Parasiten an Feinwurzeln 70–90 jähriger Fichten (Picea abies Karst.). Mitt. Ver. Forstl. Standortskde. u. Forstpflanzenzücht. 33, 77–80.Google Scholar
  37. Schönhar S 1989 Infektionsversuche an Fichtenkeimlingen mit aus geschädigten Fichtenfeinwurzeln isolierten Pilzen Allg. Forst-u. J.-ztg. 160, 98–99.Google Scholar
  38. Schüler G W 1982 Krankheitserscheinungen der Wurzeln von Abies alba Mill. und ihre Beziehung zum “Tannensterben”. Dissertation Universität Freiburg.Google Scholar
  39. Söderström B E and Bååth E 1978 Soil microfungi in three Swedish coniferous forests. Holarctic Ecology 1, 62–72.Google Scholar
  40. Taylor G S and Parkinson D 1964 Studies on fungi in the root region. II. The effect of certain environmental conditions on the development of root surface mycoflora of dwarf bean seedlings. Plant Soil 20, 34–42.Google Scholar
  41. Taylor A F S, Brand F and Agerer R The response of a Norway spruce mycorrhizal community to acid irrigation and liming. Plant Soil (submitted).Google Scholar
  42. Ulrich B 1990 Forest decline in ecosystem perspective. In Int. Congr. Forest decline research: state of knowledge and perspectives Ed B Ulrich. 2–6 Oct 1989, Friedrichshafen, FRG, vol. 1. Kernforschungszentrum Karlsruhe, pp 21–41.Google Scholar
  43. Varese G C and Luppi-Mosca A M 1992 In vitro antagonistic interactions between saprotrophic microfungi associated with the roots of Pinus halepensis and Rosmarinus officinalis. Allionia 31, 67–76.Google Scholar
  44. Warcup J H 1951 Effect of partial sterilization by steam or formalin on the fungus flora of an old forest nursery soil. Trans. Br. Mycol. Soc. 34, 520–532.Google Scholar
  45. Weber G 1990 Untersuchungen der Mikropilzflora im Wurzelbereich von Fichten verschiedener Schadstufen. Diss. Tübingen.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • X.M. Qian
    • 1
  • A. El-Ashker
    • 2
  • I. Kottke
    • 3
  • F. Oberwinkler
    • 3
  1. 1.Department of BiologyXiamen UniversityXiamen, Fujian, VRChina
  2. 2.El Azhar University GazaGaza, Gaza-Strip
  3. 3.Botanical Institute, Systematic Botany, Mycology und Botanical GardenEberhard-Karls-University TuebingenTübingenGermany

Personalised recommendations