Journal of Philosophical Logic

, Volume 27, Issue 3, pp 217–274 | Cite as

Modal Languages and Bounded Fragments of Predicate Logic

  • Hajnal Andréka
  • István Németi
  • Johan van Benthem
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alechina, N., On a decidable generalized quantifier logic corresponding to a decidable fragment of predicate logic, Journal of Logic, Language and Information 4(3) (1995), 177–189.Google Scholar
  2. Alechina, N. and van Benthem, J., Modal Logics of Structured Domains, Report ML–93–02, Institute for Logic, Language and Computation, University of Amsterdam. To appear in M. de Rijke (ed.), Advances in Intensional Logic, Kluwer, Dordrecht, 1997.Google Scholar
  3. Alechina, N. and van Lambalgen, M., Correspondence and completeness for generalized quantifiers, Bulletin of the Interest Group in Pure and Applied Logic 3(1995), 167–190.Google Scholar
  4. Andréka, H., Complexity of Equations Valid in Algebras of Relations, D. Sc. Dissertation, Hungarian Academy of Sciences, Budapest, 1991. To appear in Annals of Pure and Applied Logic.Google Scholar
  5. Andréka, H., van Benthem, J. and Németi, I., What Makes Modal Logic Tick?, manuscript, Institute for Logic, Language and Computation, University of Amsterdam, 1992.Google Scholar
  6. Andréka, H., van Benthem, J. and Németi, I., Interpolation and Definability Properties of Finite Variable Fragments, Mathematical Institute, Hungarian Academy of Sciences, Budapest, 1993.Google Scholar
  7. Andréka, H., van Benthem, J. and Németi, I., Modal Logic and the Finite Variable Hierarchy, manuscript, Institute for Logic, Language and Computation, University of Amsterdam, Mathematical Institute, Hungarian Academy of Sciences, Budapest, 1994.Google Scholar
  8. Andréka, H., van Benthem, J. and Németi, I., Back and forth between modal logic and classical logic, Bulletin of the Interest Group in Pure and Applied Logics 3(1995A), 685–720, London and Saarbruecken.Google Scholar
  9. Andréka, H., van Benthem, J. and Németi, I., Submodel preservation theorems in finite variable fragments, in A. Ponse, M. de Rijke and Y. Venema (eds), Modal Logic and Process Algebra, CSLI Lecture Notes 53, CSLI Publications, Stanford, 1995B, pp. 1–11.Google Scholar
  10. Andréka, H., van Benthem, J. and Németi, I., Strong decidability and other positive results for algebras of sets of sequences, in preparation, 1996.Google Scholar
  11. Andréka, H., Düntsch, I. and Németi, I., Expressibility of properties of relations, Journal of Symbolic Logic 60(3) (1995), 970–991.Google Scholar
  12. Andréka, H., Gergely, T. and Németi, I., On universal algebraic construction of logics, Studia Logica 36(1977), 9–47.Google Scholar
  13. Andréka, H. and Németi, I., Crs With, and Without Substitutions, manuscript, Mathematical Institute, Hungarian Academy of Sciences, Budapest, 1994.Google Scholar
  14. Barwise, J., Admissible Sets and Structures, Springer Verlag, Berlin, 1975.Google Scholar
  15. Barwise, J. and Moss, L., Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena, CSLI Publications, Stanford, 1996.Google Scholar
  16. van Benthem, J., Modal Correspondence Theory, dissertation, Mathematical Institute, University of Amsterdam, 1976.Google Scholar
  17. van Benthem, J., Correspondence theory, in D. Gabbay and F. Guenthner (eds), Handbook of Philosophical Logic, vol. II, Reidel, Dordrecht, 1984.Google Scholar
  18. van Benthem, J., Modal Logic and Classical Logic, Bibliopolis, Napoli, 1985.Google Scholar
  19. van Benthem, J., Language in Action, North-Holland, Amsterdam, 1991.Google Scholar
  20. van Benthem, J., Programming Operations that are Safe for Bisimulation, CSLI Report 93–179, Center for the Study of Language and Information, Stanford, 1993. To appear in Studia Logica, 1997.Google Scholar
  21. van Benthem, J., A Modal Perspective on Process Operations, manuscript, Institute for Logic, Language and Computation, University of Amsterdam, 1994A.Google Scholar
  22. van Benthem, J., Modal Foundations for Predicate Logic, CSLI Research Report 94–191, Center for the Study of Language and Information, Stanford University. To appear in E. Orlowska (ed.), Logic at Work, Memorial Volume for Helena Rasiowa, Kluwer Academic Publishers, Dordrecht, 1994B.Google Scholar
  23. van Benthem, J., Temporal logic, in D. Gabbay, Ch. Hogger and J. Robinson (eds), Handbook of Logic in AI and Logic Programming, Vol. 4, Oxford University Press, Oxford, 1995, pp. 241–350.Google Scholar
  24. van Benthem, J., Exploring Logical Dynamics, in Studies in Logic, Language and Information, CSLI Publications, Stanford, 1996.Google Scholar
  25. van Benthem, J., Dynamic Bits and Pieces, Report LP–97–01, ILLC, University of Amsterdam.Google Scholar
  26. van Benthem, J. and Bergstra, J., Logic of transition systems, Journal of Logic, Language and Information 3(4) (1995), 247–283.Google Scholar
  27. Chang, C. and Keisler, H., Model Theory, North-Holland, Amsterdam, 1973.Google Scholar
  28. Dawar, A., Feasible Computation Through Model Theory, dissertation, Computer Science Department, University College of Swansea, 1993.Google Scholar
  29. Fine, K., Natural deduction and arbitrary objects, Journal of Philosophical Logic 14 (1985), 57–107.Google Scholar
  30. Fitting, M., Basic modal logic, in D. Gabbay, Ch. Hogger and J. Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. I, Oxford University Press, Oxford, 1993.Google Scholar
  31. Gabbay, D., Expressive functional completeness in tense logic, in U. Mönnich (ed.), Aspects of Philosophical Logic, Reidel, Dordrecht, 1981, pp. 91–117.Google Scholar
  32. Gallin, D., Intensional and Higher-Order Modal Logic, North-Holland, Mathematics Studies 19, Amsterdam, 1975.Google Scholar
  33. Gargov, G., Passy, S. and Tinchev, T., Modal environment for Boolean speculations, in D. Skordev (ed.), Mathematical Logic and Applications, Plenum Press, New York, 1987, pp. 253–263.Google Scholar
  34. Henkin, L., Logical Systems Containing Only a Finite Number of Symbols, Séminaire de Mathématiques Supérieures 21, Les Presses de l'Université de Montréal, Montréal, 1967, 48 pp.Google Scholar
  35. Henkin, L., Monk, J. D. and Tarski, A., Cylindric Algebras, Part I, North-Holland, Amsterdam, 1971.Google Scholar
  36. Henkin, L., Monk, J. D. and Tarski, A., Cylindric Algebras, Part II, North-Holland, Amsterdam, 1985.Google Scholar
  37. Hennessy, M. and Milner, R., Algebraic laws for nondeterminism and concurrency, Journal of the ACM 32(1985), 137–161.Google Scholar
  38. Hodkinson, I., Finite H-dimension does not imply expressive completeness, Journal of Philosophical Logic 23(1994), 535–573.Google Scholar
  39. Hollenberg, M. and Vermeulen, K., Counting Variables in a Dynamic Setting, Logic Group Preprint Series 125, Filosofisch Instituut, Rijksuniversiteit, Utrecht, 1994.Google Scholar
  40. Immerman, N., Relational queries computable in polynomial time, Proceedings 14th Annual ACM Symposium on the Theory of Computing, 1982, pp. 147–152.Google Scholar
  41. Immermann, N. and Kozen, D., Definability with bounded number of bound variables, Proceedings 2d IEEE Symposium on Logic in Computer Science, 1987, pp. 236–244.Google Scholar
  42. Kolaitis, F. and Väänänen, J., Generalized quantifiers and pebble games on finite structures, Proceedings of the 7th IEEE Symposium on Logic in Computer Science, 1992, pp. 348–359. (Full version to appear in Annals of Pure and Applied Logic.)Google Scholar
  43. Kracht, M., How completeness and correspondence theory got married, in M. de Rijke (ed.), Diamonds and Defaults, Kluwer, Dordrecht, 1993, pp. 175–214.Google Scholar
  44. Kracht, M. and Wolter, F., Properties of independently axiomatizable bimodal logics, Journal of Symbolic Logic 56(1991), 1469–1485.Google Scholar
  45. van Lambalgen, M., Natural deduction for generalized quantifiers, in J. van der Does and J. van Eyck (eds), Generalized Quantifiers, Theory and Applications, Dutch PhD Network for Language, Logic and Information, Amsterdam, 1991, pp. 143–154. (Appeared with CSLI Publications, Stanford, 1996.)Google Scholar
  46. van Lambalgen, M. and Simon, A., Axiomatization of Cylindric-Relativized Set Algebras with Polyadic Quantifiers, Institute for Logic, Language and Computation, Amsterdam, and Mathematical Institute, Hungarian Academy of Sciences, Budapest, 1994.Google Scholar
  47. Madaràsz, J., Craig Interpolation in Algebraizable Logics, submitted. Mathematical Institute, Budapest, 1994, preprint.Google Scholar
  48. Marx, M., Arrow Logic and Relativized Algebras of Relations, PhD dissertation, CCSOM and ILLC, University of Amsterdam, 1995.Google Scholar
  49. Mason, I., The meta-theory of the classical propositional calculus is not axiomatizable, Journal of Symbolic Logic 50(1985), 451–457.Google Scholar
  50. Monk, J. D., Nonfinitizability of classes of representable cylindric algebras, Journal of Symbolic Logic 34(1969), 331–343.Google Scholar
  51. Németi, I., Connections between cylindric algebras and initial algebra semantics of CF languages, in B. Domolki and T. Gergely (eds), Mathematical Logic in Computer Science (Proceedings Conference Salgotarjan 1978), Colloq. Math. Soc. J. Bolyai, Vol. 26, North-Holland, Amsterdam, 1981, pp. 561–605.Google Scholar
  52. Németi, I., Cylindric-relativized set algebras have strong amalgamation, Journal of Symbolic Logic 50(3) (1985), 689–700.Google Scholar
  53. Németi, I., Free Algebras and Decidability in Algebraic Logic, Third Doctoral Dissertation, Mathematical Institute, Hungarian Academy of Sciences, Budapest, 1986.Google Scholar
  54. Németi, I., On cylindric algebraic model theory, in C. Bergman, R. Maddux and D. Pigozzi (eds), Algebraic Logic and Universal Algebra in Computer Science (Proceedings Conference Ames 1988), Lecture Notes in Computer Science, Vol. 425, Springer Verlag, Berlin, 1990, pp. 37–76.Google Scholar
  55. Németi, I., Algebraizations of quantifier logics: an introductory overview, Studia Logica 50(3–4) (1991), 485–569. (See also Németi 1994.)Google Scholar
  56. Németi, I., Decidability of weakened versions of first-order logic. First version in Pre-Proceedings Logic at Work, CCSOM, Amsterdam. Appeared as “Decidable Versions of First-Order Logic and Cylindric-Relativized Set Algebras”, in L. Csirmaz, D. Gabbay and M. de Rijke, eds., 1995, Logic Colloquium 92.Veszprem, Hungary, Studies in Logic, Language and Information, CSLI Publications, Stanford, 1992, pp. 177–241.Google Scholar
  57. Németi, I., Algebraizations of Quantifier Logics, extended version, to appear in Proceedings Summer School on Algebraic Logic, Budapest, 1994.Google Scholar
  58. Ohlbach, H.-J., Semantic-based translation methods for modal logics, Journal of Logic and Computation 1(5) (1991), 691–746.Google Scholar
  59. Pigozzi, D., Amalgamation, congruence extension, and interpolation properties in algebras, Algebra Universalis 1(1971), 269–349.Google Scholar
  60. Roorda, D., Resource Logics. A Proof-Theoretic Investigation, dissertation, Institute for Logic, Language and Computation, University of Amsterdam, 1991.Google Scholar
  61. Rosen, E. and Weinstein, S., Preservation Theorems in Finite Model Theory, The Institute for Research in Cognitive Science, University of Pennsylvania, Philadelphia, 1995.Google Scholar
  62. de Rijke, M., Extending Modal Logic, dissertation, Institute for Logic, Language and Computation, University of Amsterdam, 1993.Google Scholar
  63. Sain, I., Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic, in C. Bergman, R. Maddux and D. Pigozzi (eds), Algebraic Logic and Universal Algebra in Computer Science, Lecture Notes in Computer Science 425, Springer Verlag, Berlin, 1990, pp. 209–226.Google Scholar
  64. Sain, I. and Simon, A., Negative and Positive Results on Definability Properties in Finite Variable Fragments, manuscript, Mathematical Institute, Hungarian Academy of Sciences, Budapest, 1993.Google Scholar
  65. Sain, I. and Thompson, R. J., Strictly Finite Schema Axiomatization of Quasi-Polyadic Algebras, Algebraic Logic, North-Holland, 1990, pp. 539–572.Google Scholar
  66. Schütte, K., Der Interpolationssatz der Intuitionistischen Prädikatenlogik, Mathematische Annalen 148(1962), 192–200.Google Scholar
  67. Tarski, A. and Givant, S. R., A Formalization of Set Theory Without Variables, AMS Colloquium Publications, Vol. 41, Providence, Rhode Island, 1987.Google Scholar
  68. Venema, Y., Many-Dimensional Modal Logic, dissertation, Mathematical Institute, University of Amsterdam, 1991.Google Scholar
  69. Venema, Y., A modal logic for quantification and substitution, in L. Csirmaz, D. Gabbay and M. de Rijke (eds), 1995, Logic Colloquium 92.Veszprem, Hungary, Studies in Logic, Language and Information, CSLI Publications, Stanford, 1995A, pp. 293–309.Google Scholar
  70. Venema, Y., Cylindric modal logic, Journal of Symbolic Logic 60(1995B), 591–623.Google Scholar
  71. Venema, Y. and Marx, M., Multi-Dimensional Modal Logic, Kluwer, Dordrecht, 1996.Google Scholar
  72. Visser, A., de Jongh, D., Renardel, G. and van Benthem, J., NNIL, a study in intuitionistic propositional logic, in A. Ponse, M. de Rijke and Y. Venema (eds), Modal Logic and Process Algebra, CSLI Lecture Notes, Stanford, 1995, pp. 289–326.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Hajnal Andréka
    • 1
  • István Németi
    • 1
  • Johan van Benthem
    • 2
  1. 1.Institute of MathematicsHungarian Academy of SciencesBudapestHungary (email
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamThe Netherlands (email

Personalised recommendations