Plant and Soil

, Volume 190, Issue 2, pp 267–277 | Cite as

Modelling root growth of wheat as the linkage between crop and soil

  • S. Asseng
  • C. Richter
  • G. Wessolek


The simulation of crop - soil systems with a model requires an appropriate description of the root dynamics. An empirical root growth model that simulates root-shoot relations, root distribution and a dynamic response to environmental conditions is presented. The root model extends an existing crop model and links it to a soil model to calculate dry matter accumulation, water and nitrogen dynamics of a wheat crop. Simulated roots are distributed over soil layers according to carbon supply from the shoots by using a 'top down principle'. This principle favours the top layers for root growth by first providing all available carbon to the first layer. Under unfavourable soil conditions in that layer, carbon is given to the next deeper soil layer. This procedure is repeated until a separately calculated rooting depth is reached. At that depth all available carbon is used for root growth regardless of current soil conditions. Under most simulated conditions the 'top down principle ' results in a negative exponential function of a monotone decrease of root distribution with soil depth. However, it can also account for larger root densities deeper in the profile when water or nitrogen deficiency occurs in soil. In addition to soil water and soil nitrogen supply the root model considers soil compaction, aeration and root distribution history for root growth simulation. The new model, consisting of an existing crop and soil model and linked through a new developed root model, was calibrated and tested using two independent field experiments. A sensitivity analysis was carried out by varying parameters, initial soil conditions and hypothetic weather patterns as part of the validation process. Root length density distribution (r2(1:1)=0.65), shoot, grain and total root biomass (r2(1:1)=0.87) were predicted satisfactorily, thus providing a useful tool for specific simulation studies on that site.

dynamic model root growth root impacts root-shoot wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adiku S G K, Braddock R D and Rose C W 1995 Simulating root growth dynamics of cowpea under varying soil conditions. InProceedings of MODSIM95, The International Congress on Modelling and Simulation, The University of Newcastle, 27-30 November 1995, Newcastle, Australia.Google Scholar
  2. Andrew S P S 1987 A mathematical model of root exploration and of grain fill with partilar reference to winter wheat. Fert. Res. 11, 267-281.Google Scholar
  3. Augustin J 1980 Neue Erkenntnisse ueber Wurzelausscheidungen unter besonderer Beruecksichtigung ihrer Auswirkungen auf die Phosphataufnahme der Pflanze. Diplomarbeit, MLU Halle, Germany.Google Scholar
  4. Barraclough P B 1986 The growth and activity of winter wheat roots in the field: Nutrient uptakes of high-yielding crops. J. Agric. Sci. 106, 45-52.Google Scholar
  5. Borg H and Grimes DW 1986 Depth development of rootswith time: An empirical description. Am. Soc. Agric. Eng. 29, 194-197.Google Scholar
  6. Brouwer R 1962 Nutritive influences on the distribution of dry-matter in the plant. Neth. J. Agric. Sci. 10, 399-408.Google Scholar
  7. Brouwer R 1983 Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31, 335-348.Google Scholar
  8. Chapman S C, Hammer G L and Meinke H 1993 A sunflower simulation Model: I. Model Development. Agron. J. 85, 725-735.Google Scholar
  9. Clausnitzer V and Hopmans J W 1994 Simultaneus modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164, 299-314.Google Scholar
  10. Denison R F and Loomis R S 1989 An integrative physiological model of alfalfa growth and development. Div. of Agricultural and Natural Resources, Oaklands. 73p.Google Scholar
  11. Diggle A J 1988 ROOTMAP-a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105, 169-178.Google Scholar
  12. Gerwitz A and Page E R 1974 An empirical mathematical model to describe plant root systems. J. Appl. Ecol. 11, 773-783.Google Scholar
  13. Gliemeroth G 1953 Bearbeitung und Duengung des Unterbodens in ihrer Wirkung auf Wurzelentwicklung, Stoffaufnahme und Pflanzenleistung. Z. Acker-Pflanzenbau, 96, 1-44.Google Scholar
  14. Glinski J and Lipiec J 1990 Soil physical condition and plant roots. CRC Press Inc. Boca Raton, FL. 249 p.Google Scholar
  15. Grant R F 1993 Simulation model of soil compaction and root growth. I. Model structure. Plant Soil 150, 1-14.Google Scholar
  16. Gregory P J, McGowan M, Biscoe P V and Hunter B 1978 Water relations of winter wheat. I. Growth of the root system. Agric. Sci. 91, 91-102.Google Scholar
  17. Groot J J R 1987 Simulation of nitrogen balance in a system of winter wheat and soil. Simulation Report CABO-TT, No 13, Agricultural University, Wageningen.Google Scholar
  18. Hansen G K 1975 A dynamic continuous simulation model of water state and transpiration in the soil-plant-atmosphere system. I. The model and its sensitivity. Acta Agric. Scand. 25, 129-149.Google Scholar
  19. Hoogenboom G and Huck MG 1986 ROOTSSIMU V4.0A Dynamic Simulation of Root Growth, Water Uptake, and Biomass Partitioning in a Soil-Plant-Atmosphere Continuum: Update and Documentation. Agronomy and Soils Departmental Series No. 109, Auburn University, Alabama.Google Scholar
  20. Hoogenboom G, Huck M G and Hillel D 1987 Modification and testing of a model simulating root and shoot growth as related to soil water dynamics. Adv. Irrig. 4, 331-387.Google Scholar
  21. Huck M G and Hillel D 1983 A model of root growth and water uptake accounting for photosynthesis, respiration, transpiration, and soil hydraulics. Adv. Irrig. 2, 273-333.Google Scholar
  22. Johnson I R and Thornley J H M 1985 Dynamic modelling of the response of a vegetative grass crop to light, temperature and nitrogen. Plant Cell Environ. 8, 485-499.Google Scholar
  23. Jones C A and Kiniry J R (eds) 1986 CERES-Maize: A simulation model of maize growth and development. Texas A and M Univ. Press, College Station, TX.Google Scholar
  24. Jones C A, Bland W L, Ritchie J T and Williams J R 1991 Simulation of root growth. Modeling plant and soil systems. Agron. Monogr. 31, 91–123.Google Scholar
  25. Kartschall T 1986 Simulationsmodell der Bodenstickstoffdynamik. Diss., Berlin.Google Scholar
  26. Kartschall T, Matthaeus E and Asseng S 1990 Simulation experiments with the agroecosystem model DEMETER using SONCHES. Syst. Anal. Model. Simul. 7, 429-438.Google Scholar
  27. Klepper B 1990 Root growth and water uptake. InModeling plant and soil systems. AgronomyMonograph 31. pp 281-322. ASA, CSSA, SSSA Madison, WI.Google Scholar
  28. Klepper B 1991 Crop root system response to irrigation. Irrig. Sci. 12, 105-108.Google Scholar
  29. Klepper B and Rickman R W 1990 Modeling crop root growth and function. Adv. Agron. 44, 113-132.Google Scholar
  30. Kretschmer H 1989 Ergebnisse zur potentiellen Stickstoffaufnahme beiWinterweizen. Arch. Acker-Pflanzenbau Bodenkd. 33, 231- 238.Google Scholar
  31. Lungley D R 1973 The growth of root systems-a numerical computer simulation model. Plant Soil 38, 145-159.Google Scholar
  32. Matthaeus E, Mirschel W, Kretschmer H, Kuenkel K and Klank I 1986 The Winter wheat crop model TRITSIM of the agroecosystem AGROSIM-W. InComputer-aided modelling and simulation of the winter wheat agroecosystem (AGROSIM-W) for integrated pest management. Tagungsbericht AdL 242, 43-74.Google Scholar
  33. Mirschel W, Klang I, Kretschmer H and Kuenkel H 1987 Dynamisches Ertragsbildungs-und Entwicklungsmodell TRITSIM für Winterweizen. 2. Mitteilung: Modellvalidierung und-verifizierung. Arch. Acker-Pflanzenbau Bodenkd. 31, 259-267.Google Scholar
  34. Mirschel W, Matthaeus E and Kretschmer H 1989 Stand und Nutzungsmoeglichkeiten desWeizenmodells TRITSIM. Agrarinformatik 16, 231-246.Google Scholar
  35. Mirschel W, Kretschmer K and Matthaeus E 1990 Dynamisches Modell zur Abschaetzung der Ontogenese von Winterweizen unter Beruecksichtigung des Wasser-und Stickstoffversorgungzustandes. Arch. Acker-Pflanzenbau Bodenkd. 34, 691-699.Google Scholar
  36. Monteith J L, Huda A K S and Midya D 1989 RESCAP: A resource model for sorghum and pearl millet. InModelling the Growth and Development of Sorghum and Pearl Millet. Eds. S M Virmani, H L S Tandon and G Alagarswarmy. Res. Bull. 12, pp 30-34. ICRISAT, Patanchera.Google Scholar
  37. O'Leary G J, Connor D J and White D 1985 A simulation model of the development, growth and yield of the wheat crop. Agric. Syst. 17, 1-26.Google Scholar
  38. Pages L, Jordan M O and Picard D 1989 A simulation model of the three-dimensional architecture of the maize root system. Plant Soil 119, 147-154.Google Scholar
  39. Penning de Vries FWT, Jansen D M, ten Berge H FM and Bakema A 1989 Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs 29. Pudoc, Wageningen. 271 p.Google Scholar
  40. Pfeil v E, Hundertmark W, Thies F D and Widmoser P 1992 Calibration of the simulation model “Ceres Wheat” under conditions of soils with shallow watertable and temperate climate. Part 1: Limitations in the applicability of the original model and necessary modifications. Z. Pflanzenernaehr. Bodenkd. 155, 323-326.Google Scholar
  41. Porter J R, Klepper B and Belford R K 1986 A model (WHTROOT) which synchronises root growth and development with shoot development for winter wheat. Plant Soil 92, 133-145.Google Scholar
  42. Reynolds J F and Thornley J H M 1982 A Shoot:Root Partitioning Model. Ann. Bot. 49, 585-597.Google Scholar
  43. Ritchie J T, Godwin DC and Otter S 1985 CERES-Wheat: Auser oriented wheat yield model. Preliminary documentation. AGRISTARS Publication YM-U3-04442-JSC-18892. Michigan State University, MI. 252 p.Google Scholar
  44. Robertson M J, Fukai S, Hammer G L and Ludlow M M 1993 Modelling root growth of grain sorghum using the CERES approach. Field Crops Res. 33, 113-130.Google Scholar
  45. Rose D A 1983 The description of the growth of root systems. Plant Soil 75, 405-415.Google Scholar
  46. Roth D, Krumbiegel D and Weise K 1980 Nomogramme zur Abschaetzung des Zusatzregenbedarfs fuer die Beregnung aus der klimatischen Wasserbilanz und dem pflanzenverfuegbaren Bodenfeuchtevorrat bei unterschiedlicher Sicherheit in der Wasserbereitstellung. Arch. Acker-Pflanzenb. 24, 105-122Google Scholar
  47. Spek L Y and van Oijen M 1988 A simulation model of root and shoot growth at different levels of nitrogen availability. Plant Soil 111, 191-197.Google Scholar
  48. Stapper M 1984 SIMTAG: A Simulation Model of Wheat Genotypes. Model Documentation. Univ. of New England, Armidale. 108 p.Google Scholar
  49. Swinnen J 1994 Rhizodeposition and turnover of root-derived organic material in barley and wheat under conventional and integrated management. Agric. Ecosyst. Environ. 51, 115-128.Google Scholar
  50. Swinnen J, Van Veen J A and Merckx R 1995 Root decay and turnover of rhizodeposits in field-grown winter wheat and spring barley estimated by 14C pulse-labelling. Soil Biol. Biochem. 22, 211-217.Google Scholar
  51. Van Keulen H and Seligman N G 1987 Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monograph. Pudoc, Wageningen. 310 p.Google Scholar
  52. Wenzel V, Matthaeus E and Flechsig M 1985 SONCHES-Nutzerdokumentation. Dokumentation. Zentralinstitut fuer Kybernetik und Informationsprozesse, Berlin. 326 p.Google Scholar
  53. Wessolek G 1993 Einfluss von Klimaaenderungen auf den Bodenwasserhaushalt (regionale Fallstudien). Mitt. Dtsch. Bodenkd. Ges. 69, 289-293.Google Scholar
  54. Wiedenroth E A 1988 Zur Reaktion hoeherer Pflanzen auf Sauerstoffmangel. Colloq. Pflanzenphysiol. Humboldt-Univ. Berlin 12, 11-26.Google Scholar
  55. Williams J R, Jones C A and Dyke P T 1984 The EPIC Model and its Application. Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, 21-26 March, 1983. pp 111-121.Google Scholar
  56. Yamaguchi J and Tanaka A 1990 Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 36, 483-493.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • S. Asseng
    • 1
  • C. Richter
    • 1
  • G. Wessolek
    • 2
  1. 1.Institute of Crop SciencesHumboldt-UniversityBerlinGermany
  2. 2.Institute of Ecology, Technical University BerlinGermany and

Personalised recommendations