Plant and Soil

, Volume 197, Issue 1, pp 19–23 | Cite as

Isolation and identification of N2-fixing microorganisms from the rhizosphere of Capparis spinosa (L.)

  • Galdino Andrade
  • Eduardo Esteban
  • Leonardo Velasco
  • María J. Lorite
  • Eulogio J. Bedmar
Article

Abstract

Four bacterial strains, Pseudomonas stutzeri var. mendocina, Comamonas sp., Agrobacterium tumefaciens biovar. 2 and Sphingobacterium sp., isolated from the rhizosphere of wild-grown caper (Capparis spinosa L.) plants were able to fix N2 as shown by their growth in nitrogen-free medium and by the acetylene reduction test. P. stutzeri var. mendocina and Comamonas sp. contained DNA homologous to the Klebsiella pneumoniae M5a1 nifHDK genes. No hybridization was found with total DNA from either A. tumefaciens biovar. 2 or Sphingobacterium sp. using nifHDK probes from either K. pneumoniae or Rhizobium meliloti.

Agrobacterium Capparis spinosa Comamonas N2 fixation Pseudomonas rhizosphere Sphingobacterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auling G, Busse J, Hahn M, Hennecke H, Kroppenstedt RM, Probst A and Stackebrandt E 1988 Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aerobic carboxidobacteria. Syst. Appl. Microbiol. 10, 264–272.Google Scholar
  2. Bánfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I and Kondorosi A 1981 Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid on Rhizobium meliloti. Mol. Gen. Genet. 184, 318–325.Google Scholar
  3. Barraquio W L, Padre B C Jr, Watanabe I and Knowles R 1986 Nitrogen fixation by Pseudomonas saccharophila Doudoroff ATCC 15946. J. Gen. Microbiol. 132, 237–241.Google Scholar
  4. Bedmar E J and Olivares J 1979 Nitrogen fixation (acetylene reduction) by free-living Rhizobium meliloti. Curr. Microbiol. 2, 11–13.Google Scholar
  5. Cannon F C, Riedel G E and Ausubel F M 1979 Overlapping sequences of Klebsiella pneumoniae nif DNA cloned and characterized. Mol. Gen. Genet. 174, 59–66.Google Scholar
  6. Chan Y K, Barraquio W L and Knowles R 1994 N2-fixing pseudomonads and related soil bacteria. FEMS Microbiol. Rev. 13, 95–118.Google Scholar
  7. De Vos P K, Kersters E, Falsen Pot B, Gillis M, Segers P and De Ley J 1985 Comamonas Davis and Park 1962 gen. nov., rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol. 33, 443–453.Google Scholar
  8. Dobereiner J and Day J M 1976 Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In Proceedings 1st International Symposium on Nitrogen Fixation. pp. 518–538. Washington State University Press, Pullman, Washington.Google Scholar
  9. Eady RR 1992 The dinitrogen-fixing bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria: ecophysiology, isolation, identification, applications, 2nd edn., Vol. I. Eds. A Balows, HG Trüper, M Dworkin, W Harder and K H Schleifer. pp. 534–553. Springer-Verlag, New York.Google Scholar
  10. Fallik E, Chan Y K and Robson R L 1991 Detection of alternative nitrogenases in aerobic Gram-negative nitrogen-fixing bacteria. J. Bacteriol. 173, 365–371.Google Scholar
  11. Fenton M and Jarvis B D 1994 Expression of the symbiotic plasmid from Rhizobium leguminosarum biovar trifolii in Sphingobacterium multivorum. Can. J. Microbiol. 40, 873–879.Google Scholar
  12. Glick B R 1995 The enhancement of plant growth by free-living bacteria. Can J. Microbiol. 41, 109–117.Google Scholar
  13. Jenni B, Isch C and Aragno M 1989 Nitrogen fixation by new strains of Pseudomonas pseudoflava and related bacteria. J.Gen. Microbiol. 135, 461–467.Google Scholar
  14. Jordan D C 1984 Family III Rhizobiaceae Conn. 1983. In Bergey's Manual of Systematic Bacteriology, Vol. I. Eds. N R Krieg and J G Holt. pp. 234–256. Williams and Wilkins, Baltimore, MD, USA.Google Scholar
  15. Kanvinde L and Sastry G R K 1990 Agrobacterium is a diazotrophic bacterium. Appl. Environ. Microbiol. 56, 2087–2092.Google Scholar
  16. Krotzky A and Werner D 1987 Nitrogen fixation in Pseudomonas stutzeri. Arch. Microbiol. 147, 48–57.Google Scholar
  17. Markwell M A K, Haas S M, Bieber L L and Tolberg N E 1978 A modification of the Lowry procedure to simplify protein determination. Anal. Biochem. 87, 206–210.Google Scholar
  18. Paster B J, Ludwig W, Weisburg W G, Stackebrandt E, Hespell R.B, Hahn, C M, Reichenbach H, Stetter K O and Woese C R 1985 A phylogenetic grouping of the Bacteroides, cytophagas and certain flavobacteria. Syst. Appl. Microbiol. 6, 34–42.Google Scholar
  19. Pugnaire F I 1989 Estudio de la nutrici´on mineral de un arbusto mediterráneo (Capparis sp.). Ph.D. Thesis. Facultad de Ciencias, Universidad de Granada.Google Scholar
  20. Pugnaire F I and Esteban E 1991 Nutritional adaptations of caper shrub (Capparis ovata Desf.) to environmental stress. J. Plant Nutr. 14, 151–161.Google Scholar
  21. Rhizopoulou S 1990 Physiological responses of Capparis spinosa L. to drought. J. Plant Physiol. 136, 341–348.Google Scholar
  22. Ruvkun G B and Ausubel F M 1980 Interspecies homology of nitrogenase genes. Proc. Natl. Acad. Sci. USA, 77, 191–195.Google Scholar
  23. Sambrook J, Fritsch E F and Maniatis T 1989 Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. Steyn P L, Pot B, Segers P, Kersters K and Joubert J J 1992 Some novel aerobic heparin-degrading bacterial isolates. Syst. Appl. Microbiol. 15, 137–143.Google Scholar
  25. Watanabe I, So R, Ladha J K, Katayama-Fujimora Y and Huraishi H 1987 A new nitrogen-fixing species of pseudomonad: Pseudomonas diazotrophicus sp. nov. isolated from the root of wetland rices. Can. J. Microbiol. 33, 670–678.Google Scholar
  26. Willems A, De Vos P and De Ley J 1992 The genus Comamonas. In The Prokaryotes: A Handbook on the Biology of Bacteria: ecophysiology, isolation, identification, applications, 2nd edn., Vol. III. Eds. A Balows, H G. Trüper, M Dworkin, W Harder and K H Schleifer. pp. 2583–2590. Springer-Verlag, New York.Google Scholar
  27. Willems A and Collins M D 1993 Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43, 305–313.Google Scholar
  28. Wilson P W and Knight S C 1952 Experiments in Bacterial Physiology. Burguess Publishing, Minneapolis. 49 p.Google Scholar
  29. Yabuuchi E, Kaneko T, Yano I, Moss C W and Miyoshi N 1983 Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose non-fermenting Gram-negative rods in CDC Groups IIk-2 and IIb. Int. J. Syst. Bacteriol. 33, 580–598.Google Scholar
  30. Woese C R, Stackebrandt E, Weisburg W G, Paster B J, Madigan M T, Fowler V J, Hahn C M, Blanz P, Gupta R, Nealson K H and Fox, G E 1984 The phylogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5, 315–326.Google Scholar
  31. Woese C R, Stackebrandt E, Macke T J and Fox G E 1985 A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 6, 141–1451.Google Scholar
  32. Zohary M 1960 The species of Capparis in the Mediterranean and the Near Eastern Countries. Bull. Res. Coun. Israel 8D, 49–64.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Galdino Andrade
    • 1
  • Eduardo Esteban
    • 2
  • Leonardo Velasco
    • 1
  • María J. Lorite
    • 1
  • Eulogio J. Bedmar
    • 1
  1. 1.Departamento de Microbiología del Suelo y Sistemas SimbióticosEstación Experimental del ZaidínGranadaSpain
  2. 2.Departamento de Agroecología y Protección VegetalEstación Experimental del ZaidínGranadaSpain

Personalised recommendations