Time-Varying Parameters Prediction

  • Carlo Grillenzoni


This paper develops a method of adaptive modeling that may be applied to forecast non-stationary time series. The starting point are time-varying coefficients models introduced in statistics, econometrics and engineering. The basic step of modeling is represented by the implementation of adaptive recursive estimators for tracking parameters. This is achieved by unifying basic algorithms—such as recursive least squares (RLS) and extended Kalman filter (EKF)—into a general scheme and next by selecting its coefficients with the minimization of the sum of squared prediction errors. This defines a non-linear estimation problem that may be analyzed in the context of the conditional least squares (CLS) theory. A numerical application on the IBM stock price series of Box-Jenkins illustrates the method and shows its good forecasting ability.

Conditional least squares extended Kalman filter IBM stock price series recursive least squares time-varying parameter models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco.Google Scholar
  2. Chen, R. and Tsay, R. S. (1993). Functional coefficient autoregressive models, J. Amer. Statist. Assoc., 88, 298–311.Google Scholar
  3. Goodwin, G. and Sin, K. S. (1984). Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood-Cliffs (NJ).Google Scholar
  4. Grillenzoni, C. (1990). Modeling time-varying dynamical systems, J. Amer. Statist. Assoc., 85, 499–507.Google Scholar
  5. Grillenzoni, C. (1993). ARIMA processes with ARIMA parameters, J. Bus. Econom. Statist., 11, 272–289.Google Scholar
  6. Grillenzoni, C. (1994). Optimal recursive estimation of dynamic models, J. Amer. Statist. Assoc., 89, 777–787.Google Scholar
  7. Guo, L. and Ljung, L. (1995a). Exponential stability of general tracking algorithms, IEEE Trans. Automat. Control, AC-40, 1376–1387.Google Scholar
  8. Guo, L. and Ljung, L. (1995b). Performance analysis of general tracking algorithms, IEEE Trans. Automat. Control, AC-40, 1388–1402.Google Scholar
  9. Kitagawa, G. (1987). Non-gaussian state-space modeling of Nonstationary time series, J. Amer. Statist. Assoc., 82, 1032–1041.Google Scholar
  10. Kitagawa, G. and Gersh, W. (1985). A smoothness priors time-varying AR coefficient modeling of nonstationary time series, IEEE Trans. Automat. Control, AC-30, 48–56.Google Scholar
  11. Klimko, L. A. and Nelson, P. I. (1978). On conditional least squares estimation for stochastic processes, Ann. Statist., 6, 629–642.Google Scholar
  12. Kushner, H. (1990). Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhauser, Berlin.Google Scholar
  13. Ljung, L. and Söderström, T. (1983). Theory and Practice of Recursive Identification, The MIT Press, Cambridge (MA).Google Scholar
  14. Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability, Springer, New York.Google Scholar
  15. Pagan, A. (1980). Some identification and estimation results for regression models with stochastically varying coefficients, J. Econometrics, 13, 341–363.Google Scholar
  16. Pourahmadi, M. (1986). On stationarity of the solution of a doubly stochastic model, J. Time Ser. Anal., 7, 123–131.Google Scholar
  17. Rao, M. M. (1961). Consistency and limit distributions of estimators of parameters in explosive stochastic difference equations, Ann. Math. Statist., 32, 195–218.Google Scholar
  18. Salgado, M. E., Goodwin, C. G. and Middleton, R. H. (1988). Modified least squares algorithms incorporating exponential resetting and forgetting, Internat. J. Control, 49, 477–491.Google Scholar
  19. Tjostheim, D. (1986). Estimation of nonlinear time series models, Stochastic Process. Appl., 21, 225–273.Google Scholar
  20. Tong, H. (1990). Nonlinear Time Series Analysis: A Dynamical System Approach, Claredon Press, Oxford (UK).Google Scholar
  21. Weiss, A. A. (1984). Systematic sampling and temporal aggregation in time series models, J. Econometrics, 26, 271–281.Google Scholar
  22. Widrow, B. and Stearns, S. D. (1985). Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs (NJ).Google Scholar
  23. Zellner, A., Hong, C. and Min, C. (1990). Forecasting turning points in international output growth rates, J. Econometrics, 49, 275–304.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 2000

Authors and Affiliations

  • Carlo Grillenzoni
    • 1
  1. 1.IUAV: University Institute of Architecture of VeniceVeneziaItaly

Personalised recommendations