, Volume 440, Issue 1–3, pp 201–216 | Cite as

A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls

  • D. Desbruyères
  • A. Almeida
  • M. Biscoito
  • T. Comtet
  • A. Khripounoff
  • N. Le Bris
  • P. M. Sarradin
  • M. Segonzac


Until 1985, seven vent fields were described from the Mid-Atlantic Ridge (MAR). An eighth field, Mount Saldanha (36° N), discovered in 1998, showed unusual geological and biological settings. Vent sites on the MAR exhibit varied environmental conditions, resulting from depth variation of the axis and associated physical parameters, and different source rocks. These could be considered as first order (i.e. most dominant) factors affecting the composition of vent communities on the MAR, in contrast to the East Pacific Rise (EPR) where geographical isolation appears to be a major determinant of faunal differences. In this paper, the geological setting and vent fluid composition of the fields are considered together with their community composition to tentatively ascertain the order of a hierarchy between dispersal and environmental control. The deepest fields (>3000 m) are rather stable systems. The shallower fields, especially Rainbow and Menez Gwen, present some evidence of instability in time and space. The variability in fluid composition is related to phase separation processes (boiling/distillation of subsurface vent fluids) and to the nature of the basement rocks. Depending on depth, phase separation produces gas-enriched and metal-depleted fluids (Menez Gwen, Lucky Strike) or metal-enriched brines (Rainbow, TAG). In addition, high methane content characterises the fluids formed in ultramafic rocks (Rainbow, Logatchev) compared to basaltic rocks. The discrepancy in mineral particulate fluxes at Lucky Strike and Menez Gwen, on one hand, and TAG and Rainbow, on the other, is correlated to the predominance of the vapour or brine phase. The semi-quantitative description of the faunal composition of the different vent fields displays a continuum from Rimicaris-dominated to Bathymodiolus-dominated assemblages. Rather than geographic or bathymetric zonation, this gradation appears to be related to the metal content of the fluids. In addition, the penetration of non vent species into the vent environment increases with decreasing hydrostatic pressure and/or metal content in the fluids. Similarity analysis between vent communities shows that similarity is strongest between Menez Gwen and Lucky Strike (the shallowest fields), less significant between these sites and Rainbow, and weakest for Snake Pit. The inverse relationship between filter feeding organisms and metal concentration in vent fluids could result from a hindrance of mussel bed development by particulate or toxic metal fluxes, and has to be further investigated. Conversely, high metal and particulate content would less affect the more mobile Rimicaris populations. Considering specific similarities of endemic fauna between the four best known hydrothermal vents, the distance between vent fields appears to be a first order parameter. Nevertheless, within the proximity of the Azores Triple Junction area, and in the absence of geographical discontinuity, the similarity between fields stays rather low suggesting faunal islands that have distinct composition and habitat requirements.

deep sea hydrothermal vents ecology Mid-Atlantic Ridge Azores Triple Junction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barriga, F., Y. Fouquet, A. Almeida, M. Biscoito, J.-L. Charlou, R. Costa, A. Dias, A. Marques, J. M. Miranda, K. Olu, F. Porteiro & M. G. Queiroz, 1998. Discovery of the Saldanha hydrothermal field on the FAMOUS segment of the M.A.R.(36º 30' N)., Eos Trans. Am. Geophys. Union: 837 pp.Google Scholar
  2. Barriga, F. J. A. S., 1999. Actividade hidrotermal no fundo do mar dos Açores: Estado da Arte, Colóquio/Ciências, 23: 44–59.Google Scholar
  3. Bricelj, V. M., R. E. Malouf & C. De Quillfeldt, 1984. Growth of juvenile Mercenaria mercenaria and the effect of resuspended bottom sediments, Mar. Biol. 84: 167–173.Google Scholar
  4. Campbell, A. C., M. R. Palmer, G. P. Klinkhammer, T. S. Bowers, J. M. Edmond, J. R. Lawrence, J. F. Casey, G. Thompson, S. Humphris, P. Rona & J. A. Karson, 1988. Chemistry of hot springs on the Mid-Atlantic Ridge, Nature 335: 514–519.Google Scholar
  5. Cann, J., C. Van Dover, C. Walker, P. Dando & B. Murton, 1994. Diversity of vent ecosystems (DOVE). Bridge 4: 1–39.Google Scholar
  6. Cavanaugh, C. M., C. O. Wirsen & H. W. Jannasch, 1992. Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl. Environ. Microbiol. 58: 3799–3803.Google Scholar
  7. Charlou, J.-L., J.-P. Donval, E. Douville, J. Knoery, Y. Fouquet, H. Bougault, P. Jean-Baptiste, M. Stievenard & S. Michel, 1997. High methane flux between 15º N and the Azores Triple Junction, Mid-Atlantic Ridge. Eos Trans. Am. Geophys. Union 78 (46): F831.Google Scholar
  8. Charlou, J. L. & J. P. Donval, 1993. Hydrothermal methane venting between 12º N and 26º N along the Mid-Atlantic Ridge. J. Geophys. Res., B, 98: 9625–9642.Google Scholar
  9. Charlou, J. L., J. P. Donval, P. Jean-Baptiste, A. Dapoigny & P. A. Rona, 1996. Gases and helium isotopes in high temperature solutions sampled before and after ODP leg 158 drilling at TAG hydrothermal field (26º N, MAR). Geophys. Res. Lett. 23 (23): 3491–3794.Google Scholar
  10. Charlou, J.-L., J.-P. Donval, E. Douville, P. Jean-Baptiste, J. Radford-Knoery, Y. Fouquet, A. Dapoigny & M. Stievenard, 2000. Compared geochemical signatures and the evolution of Menez Gwen (37º 50' N) and Lucky Strike (37º 17' N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem. Geol. 171: 49–75.Google Scholar
  11. Charlou, J.-L., J.-P. Donval, N. Holm, E. Douville, J. Radford-Knoery, Y. Fouquet & C. German, submitted. Hydrogen: energy source for abiotic hydrocarbons and prebiotic molecule synthesis at the Rainbow serpentinized hydrothermal field (36º 14' N, M.A.R.), Geochim. Cosmochim. Acta.Google Scholar
  12. Chevaldonné, P., D. Jollivet, R. A. Feldman, D. Desbruyères, R. A. Lutz & R. C. Vriejenhoek, 1998. Commensal scale-worms of the genus Branchipolynoe (Polychaeta: Polynoidae) at deep sea hydrothermal vents and cold-seeps. Cah. Biol.Mar. 39: 347–350.Google Scholar
  13. Childress, J. J. & C. R. Fisher, 1992. The biology of hydrothermal vent animals: Physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Annu. Rev. 30 (4044): 337–441.Google Scholar
  14. Colaço, A., F. Dehairs & D. Desbruyères. Nutritional relations of deep sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach, Deep-Sea Res. submitted.Google Scholar
  15. Colaço, A., D. Desbruyères, T. Comtet & A. M. Alayse, 1998. Ecology of the Menez Gwen hydrothermal vent field (Mid-Atlantic Ridge/Azores Triple Junction). Cah. Biol. Mar. 39: 237–240.Google Scholar
  16. Comtet, T., 1998. Structure des populations, reproduction, croissance et phylogéographie des Mytilidae des champs hydrothermaux Lucky Strike et Menez Gwen (37º 17' N et 37º 50' N sur la dorsale médio-atlantique), Doctorat d'Université, thèse à l'Université de Bretagne Occidentale, Brest, France.Google Scholar
  17. Dando, P., A. Fiala-Médioni, R. Stöhr, P.-M. Sarradin & A.-M. Alayse-Danet, 1998. Behaviour of vent mussels with methanotrophic and sulphur-oxidising symbionts. Nature submitted.Google Scholar
  18. Desbruyères, D., 1998. Temporal variations in the vent communities on the East Pacific Rise and Galapagos Spreading Centre: a review of present knowledge. Cah. Biol. Mar. 39: 241–244.Google Scholar
  19. Desbruyères, D., A. M. Alayse-Danet, S. Ohta & Scientific parties of STARMER and BIOLAU cruises, 1994. Deep sea hydrothermal communities in Southern Pacific back-arc basins (the North Fiji and Lau Basins): composition, microdistribution and food-web. Mar. Geol. 116: 227–242.Google Scholar
  20. Desbruyères, D., M. Biscoito, J.-C. Caprais, A. Colaço, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.-M. Sarradin, M. Segonzac & A. Vangriesheim, in press. Variations in deep sea hydrothermal vent communities on the Mid-Atlantic Ridge when approaching the Azores Plateau.Google Scholar
  21. Desbruyères, D. & M. Segonzac, 1997. Handbook of Deep-sea Hydrothermal Vent Fauna. 279 pp.IFREMER, BrestGoogle Scholar
  22. Donval, J.-P., J.-L. Charlou, E. Douville, J. Knoery, Y. Fouquet, E. Poncevera, P. Jean-Baptiste, M. Stievenard & C. German, 1997. High H2 and CH4 content in hydrothermal fluids from rainbow site newly sampled at 36º 14' N on the AMAR segment, Mid-Atlantic Ridge (diving Flores cruise, July 1997). Comparison with other MAR sites. Eos Trans. Am. Geophys. Union 78 (46): 832.Google Scholar
  23. Douville, E., P. Bienvenu, J. L. Charlou, J.-P. Donval, Y. Fouquet, P. Appriou & T. Gamo, 1999. Yttrium and rare earth elements in fluids from various deep sea hydrothermal systems. Geochim. Cosmochim. Acta. 63(5): 627–643.Google Scholar
  24. Douville, E., J.-L. Charlou, J.-P. Donval, D. Hureau & P. Appriou, 1999. Le comportement de l'arsenic (As) et de l'antimoine (Sb) dans les fluides provenant de différents systèmes hydrothermaux océaniques. C. R. Acad. Sci. Paris, Sér. II. 328: 97–104.Google Scholar
  25. Douville, E., J.-L. Charlou, J.-P. Donval, J. Knoery, Y. Fouquet, P. Bienvenu & P. Appriou, 1997. Trace elements in fluids from the new Rainbow hydrothermal field (36º 14' N, MAR): a comparison with other Mid-Atlantic fluids. Eos Trans. Am. Geophys. Union. 78 (46): 832.Google Scholar
  26. Edmond, J. M., A. C. Campbell, M. R. Palmer, G. P. Klinkhammer, C. R. German, H. N. Edmonds, H. Elderfield, G. Thompson & P. Rona, 1995. Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic ridge: a new solution chemistry model and amechanism for Cu/Zn zonation inmassive sulphide orebodies. In Parson, C.L.W.L.M. & D.R. Dixon (eds), Hydrothermal Vents and Processes. The Geological Society of London, London: 77–86.Google Scholar
  27. Edmonds, H. N., C. R. German, D. R. H. Green, Y. Huh, T. Gamo & J. M. Edmond, 1996. Continuation of the hydrothermal fluid chemistry time series at TAG, and the effects of ODP drilling. Geophys. Res. Lett. 23 (23): 3487–3489.Google Scholar
  28. Fiala-Médioni, A., C. Cavanaugh, P. Dando & C. Van Dover, 1996. Symbiotic mussels from the Mid-Atlantic ridge: adaptations to trophic resources. J. Conf. Abstr. 1 (2): 788, 1996.Google Scholar
  29. Fisher, C. R., 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2: 399–613.Google Scholar
  30. Fouquet, Y., 1997. Where are the large hydrothermal sulphide deposits in the oceans? Phil. Trans. r. Soc. Lond. A 355: 427–441.Google Scholar
  31. Fouquet, Y., J.-L. Charlou, I. Costa, J.-P. Donval, J. Radford-Knoery, H. Pellé, H. Ondréas, N. Lourenço, M. Segonzac & M. K. Tivey, 1994. A detailed study of the Lucky Strike Hydrothermal site and discovery of a new hydrothermal site: Menez Gwen; preliminary results of the Diva 1 Cruise (5–29 May, 1994). InterRidge News 3 (2): 14–17.Google Scholar
  32. Fouquet, Y., J.-L. Charlou, J.-P. Donval, J. Radford-Knoery, H. Ondréas, P. Cambon, H. Bougault, J. Etoubleau, F. J. A. S. Barriga, I. M. A. Costa, N. Lourenço & M. K. Tivey, submitted. Hydrothermal processes on shallow volcanic segments: Mid Atlantic Ridge near the Azores Triple Junction. J. Geophys. Res. B.Google Scholar
  33. Fouquet, Y., J.-L. Charlou, H. Ondréas, J. Radford-Knoery, J.-P. Donval, E. Douville, R. Apprioual, P. Cambon, H. Pellé, J.-Y. Landuré, A. Normand, E. Ponsevera, C. German, L. Parson, F. Barriga, I. Costa, J. Relvas & A. Ribeiro, 1997. Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36º 14 N). Eos Trans. Am. Geophys. Union 78 (46): 832.Google Scholar
  34. Fouquet, Y., J. P. Eissen, H. Ondréas, F. Barriga, R. Batiza & L. Danyushevsky, 1999. Extensive volcanoclastic deposits at the Mid-Atlantic Ridge axis: results of deep-water basaltic explosive volcanic activity? Terra Nova 10: 280–286.Google Scholar
  35. Fouquet, Y., H. Ondréas, J.-L. Charlou, J.-P. Donval, J. Radford-Knoery, I. Costa, N. Lourenço & M. K. Tivey, 1995. Atlantic lava lakes and hot vents. Nature 377: 201.Google Scholar
  36. Galkin, S. V. & L. I. Moskalev, 1990. Hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology 30 (5): 624–627.Google Scholar
  37. Gamo, T., H. Chiba, H. Masuda, H. N. Edmonds, K. Fujioka, Y. Kodama, H. Nanba & Y. Sano, 1996. Chemical characteristics of hydrothermal fluids from the TAG mound of the Mid-Atlantic ridge in August 1994: implications for spatial and temporal variability of hydrothermal activity. Geophys. Res. Lett. 23 (23): 3483–3486.Google Scholar
  38. Gebruk, A. V., S. V. Galkin, A. L. Vereshchaka, L. I. Moskalev & A. J. Southward, 1997a. Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Adv. Mar. Biol. 32: 93–144.Google Scholar
  39. Gebruk, A. V., L. I. Moskalev, P. Chevaldonné, S. M. Sudarikov & P. Chernyaev, 1997b. Hydrothermal vent fauna of the Logatchev area (14º 45' N, MAR): preliminary results from first Mir and Nautile dives in 1995. InterRidge News 6 (2): 1–8.Google Scholar
  40. German, C. R. & L. M. Parson, 1998. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls. Earth Planet. Sci. Lett 160: 327–341.Google Scholar
  41. Goffredi, S. K., J. J. Childress, N. T. Desaulniers & F. H. Lallier, 1997. Sulfide acquisition by the vent worm Riftia pachyptila apprears to be via uptake of HS-, rather than H2S. J. Exp. Biol. 200: 2609–2616.Google Scholar
  42. Grassle, J. F., 1986. Animals at Mid-Atlantic Ridge Hydrothermal vents. Eos Trans. Am. Geophys. Union. 67 (44): 1022.Google Scholar
  43. Haymon, R. M., D. J. Fornari, K. L. Von Damm, M. D. Lilley, M. R. Perfit, J. M. Edmond, W. C. Shanks, R. A. Lutz, J. M. Grebmeier, S. Carbotte, D. Wright, E. S. McLaughlin, M., N. Beedle & E. Olson, 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9º 45–52' N: Direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119: 85–101.Google Scholar
  44. Hessler, R. R., S. C. France & M. A. Boudrias, 1987. Hydrothermal vent communities of theMariana back-arc basin. Eos Trans. Am. Geophys. Union 68 (44): 1531.Google Scholar
  45. Hessler, R. R. & P. F. Lonsdale, 1991. Biogeography of Mariana Trough hydrothermal vent communities, Deep-Sea Res. 38: 185–199.Google Scholar
  46. Hessler, R. R. & W. M. Smithey, Jr., 1983. The distribution and community structure of megafauna at the Galapagos Rift hydrothermal vents. In Rona, P. A., K. Boström, L. Laubier & K. L. Smith, Jr. (eds), Hydrothermal Processes at Seafloor Spreading Centers. Plenum Press, New York: 735–770.Google Scholar
  47. Jackson, D. A. & K. M. Somers, 1989. Are probability estimates from the permutation model of Mantel's test stable?. Can. J. Zool. 67: 766–769.Google Scholar
  48. James, R. H., H. Elderfield & M. R. Palmer, 1995a. The chemistry of hydrothermal fluids from the Broken Spur site, 29º N Mid-Atlantic Ridge, Geochim. Cosmochim. Acta 59 (4): 651–659.Google Scholar
  49. James, R. H., H. Elderfield, M. D. Rudnicki, C. R. German, M. R. Palmer, C. Chin, M. J. Greaves, E. Gurvich, G. P. Klinkhammer, E. Ludford, R. A. Mills, J. Thomson & A. C. Williams, 1995b. Hydrothermal plumes at Broken Spur, 29º N Mid-Atlantic ridge: chemical and physical characteristics. In Parson, C. L. W. L. M. & D. R. Dixon (eds), Hydrothermal Vents and Processes. The Geological Society of London, London: 97–109.Google Scholar
  50. Jean-Baptiste, P., J. L. Charlou, M. Stievenard, J. P. Donval, H. Bougault & C. Mevel, 1991. Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: the Snake Pit site at 23º N. Earth Planet. Sci. Lett. 106: 17–28.Google Scholar
  51. Johnson, K. S., J. J. Childress, R. R. Hessler, A.C.M. Sakamoto & C. L. Beehler, 1988. Chemical and biological interactions in the Rose Garden eastern Pacific ocean hydrothermal vent field Galapagos spreading center. Deep-Sea Res. A (Ocean. Res. Paper) 35 (10–11): 1723–1744.Google Scholar
  52. Jollivet, D., T. Comtet, P. Chevaldonné, S. Hourdez, D. Desbruyères & D. Dixon, 1998. Unexpected relationship between dispersal strategies and speciation within the association Bathymodiolus (Bivalvia) Branchipolynoe (Polychaeta) inferred from the rDNA neutral ITS2 marker. Cah. Biol. Mar. 39: 359–362.Google Scholar
  53. Khripounoff, A. & P. Albéric, 1991. Settling of particles in a hydrothermal vent field (East Pacific Rise 13º N) measured with sediment traps. Deep-Sea Res. 38: 729–744.Google Scholar
  54. Lalou, C. & E. Brichet, 1981. Possibilités de datation des dépôts de sulfures métalliques hydrothermaux sous-marins par les descendants à vie courte de l'Uranium et du Thorium. C. r. Acad. Sci. Paris, Sér. II 293: 821–824.Google Scholar
  55. Lalou, C., E. Brichet & J. Lange, 1989. Fossil hydrothermal sulfide deposits at the Galapagos Spreading Centre near 85 º 00 West: geological setting, mineralogy and chronology. Oceanol. Acta 12 (1): 1–8.Google Scholar
  56. Lalou, C., J. L. Reyss, E. Brichet, M. Arnold, G. Thompson, Y. Fouquet & P. A. Rona, 1993. New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. J. Geophys. Res. B 98: 9705–9713.Google Scholar
  57. Lalou, C., G. Thompson, M. Arnold, E. Brichet, E. Druffel & P. A. Rona, 1990. Geochronology of TAG and Snakepit hydrothermal fields, Mid-Atlantic Ridge: Witness to a long and complex hydrothermal history. Earth Planet. Sci. Lett. 97 (1704): 113–128.Google Scholar
  58. Langmuir, C., S. Humphris, D. Fornari, C. Van Dover, K. Von Damm, M. K. Tivey, D. Colodner, J. L. Charlou, D. Desonie, C. Wilson, Y. Fouquet, G. Klinkhammer & H. Bougault, 1997. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37º N on the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 148: 69–91.Google Scholar
  59. Langmuir, C. H., D. Fornari, D. Colodner, J.-L. Charlou, I. Costa, D. Desbruyères, D. Desonie, T. Emerson, A. Fiala-Médioni, Y. Fouquet, S. Humphris, L. Saldanha, R. Sours-Page, M. Thatcher, M. Tivey, C. Van Dover, K. Von Damm, K. Wiese & C. Wilson, 1993. Geological setting and characteristics of the Lucky Strike vent field at 37º 17' N on the Mid-Atlantic Ridge. Eos Trans. Am. Geophys. Union 74 (43): 99 pp.Google Scholar
  60. Lutz, R. & M. Kennish, 1993. Ecology of Deep sea Hydrothermal Vent Communities: a Review. Rev. Geophys. 31(3) (4053): 211–242.Google Scholar
  61. Murton, B. J., C. Van Dover & E. Southward, 1995. Geological setting and ecology of the Broken Spur hydrothermal vent field: 29º 10' N. In Parson, C. L. W. L. M. & D. R. Dixon (eds), Hydrothermal Vents and Processes. The Geological Society of London, London: 33–41.Google Scholar
  62. Olu, K., S. Lance, M. Sibuet, P. Henry, A. Fiala-Médioni & A. Dinet, 1997. Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. Deep-Sea Res. (I Oceanogr. Res. Pap.) 44 (5): 811–841.Google Scholar
  63. Polz, M. F., J. J. Robinson, C. M. Cavanaugh & C. L. Van Dover, 1998. Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site. Limnol. Oceanogr. 43 (7): 1631–1638.Google Scholar
  64. Rieley, G., C. L. Van Dover, D. B. Hedrick & G. Eglinton, 1999. Trophic ecology of Rimicaris exoculata: a combined lipid abundance/stable isotope approach. Mar. Biol. 133: 495–499.Google Scholar
  65. Rona, P. A., M. D. Hannington, C. V. Raman, G. Thompson, M. K. Tivey, S. E. Humphris, C. Lalou & S. Petersen, 1993. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Econ. Geol. 88: 1989–2017.Google Scholar
  66. Rudnicki, M. D. & H. Elderfield, 1992. Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26º N and 23º N, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 113: 307–321.Google Scholar
  67. Saldanha, L., M. Biscoito & D. Desbruyères, 1996. The Azorean deep sea hydrothermal ecosystem: its recent discovery. In Deep sea and shallow water extreme habitats: Affinities and adaptation. Biosyst. Ecol. Ser. 11: 383–388.Google Scholar
  68. Sarradin, P. M., N. Le Bris, D. Birot & J. C. Caprais, 1999. Laboratory adaptation of the methylene blue method to flow injection analysis: towards in situ sulfide analysis in hydrothermal seawater. Anal. Commun. 36: 157–160.Google Scholar
  69. Scott, K. M., C. R. Fisher, J. S. Vodenichar, E. R. Nix & E.Minnich, 1994. Inorganic carbon and temperature requirements for autotrophic carbon fixation by the chemoautotrophic symbionts of the giant hydrothermal vent tube worm Riftia pachyptila. Physiol. Zool. 67 (3): 617–638.Google Scholar
  70. Segonzac, M., 1992. Les peuplements associés à l'hydrothermalisme océanique du Snake Pit (dorsale médioatlantique; 23º N, 3480 m): composition et microdistribution de la mégafaune. C. R. Acad. Sci. Paris, Sér. III 314: 593–600.Google Scholar
  71. Segonzac, M., M. De Saint Laurent & B. Casanova, 1993. L'énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cah. Biol. Mar. 34: 535–571.Google Scholar
  72. Shank, T. M., M. B. Black, K. M. Halanych, R. A. Lutz & R. C. Vrijenhoek, 1999. Miocene radiation of deep sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial Cytochrome oxidase subunit I. Mol. Phylogen. Evol. 13 (2): 244–254.Google Scholar
  73. Shank, T. M., D. J. Fornari, K. L. Von Damm, M. D. Lilley, R. M. Haymon & R. A. Lutz, 1998a. Temporal and spatial patterns of biological community development at nascent deep sea hydrothermal vent (9º 50' N, East Pacific Rise). Deep-Sea Res. II 45: 465–515.Google Scholar
  74. Shank, T. M., R. A. Lutz & R. C. Vrijenhoek, 1998b. Molecular systematics of shrimp (Decapoda: Bresiliidae) from deep sea hydrothermal vents, I: Enigmatic 'small orange' shrimp from the Mid-Atlantic Ridge are juvenile Rimicaris exoculata. Mol. Mar. Biol. Biotechnol. 7 (2): 88–96.Google Scholar
  75. Sokal, R. R. & F. J. Rohlf, Biometry, 1980. 859 pp., W. H. Freeman and Company, New York: 859 pp.Google Scholar
  76. Toulmond, A., F. H. Lallier, J. De Frescheville, J. J. Childress, R. Lee, N. K. Sanders & D. Desbruyères, 1994. Unusual carbon dioxide-combining properties of body fluids in the hydrothermal vent tubeworm Riftia pachyptila. Deep-Sea Res. (I Oceanogr. Res. Pap.) 41 (10): 1447–1456.Google Scholar
  77. Tunnicliffe, V., 1988. Biogeography and evolution of hydrothermalvent fauna in the eastern Pacific Ocean. Proc. R. Soc. Lond. B 233: 347–366.Google Scholar
  78. Tunnicliffe, V., 1991. The biology of hydrothermal vents: Ecology and evolution. Oceanogr. Mar. Biol. Annu. Rev. 29: 319–407.Google Scholar
  79. Tunnicliffe, V., 1996. Paleobiology-an alternative viewpoint. J.Geosci. Education 44: 251.Google Scholar
  80. Tunnicliffe, V. & C. M. R. Fowler, 1996. Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature: 531–533.Google Scholar
  81. Tunnicliffe, V., C. M. R. Fowler & A. G. McArthur, 1996. Plate tectonic history and hot vent biogeography. In MacLeod C. J., P. A. Tyler & C. L. Walker (eds), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges. Geological Society: 225–238.Google Scholar
  82. Tunnicliffe, V., A. G. McArthur & D. McHugh, 1998. A biogeographical perspective of the deep sea hydrothermal vent fauna. Adv. Mar. Biol. 34: 254–404.Google Scholar
  83. Tyler, P. A. & C. M. Young, 1999. Reproduction and dispersal at vents and cold seeps. J. Mar. Biol. Ass. U.K. 79: 193–208.Google Scholar
  84. Vacelet, J. & N. Boury-Esnault, 1995. Carnivorous sponges. Nature 373: 333–335.Google Scholar
  85. Valdès, A. & P. Bouchet, 1998. Naked in toxic fluids: a nudibranch mollusc from hydrothermal vents. Deep-Sea Res. (II Top. Stud. Oceanogr.) 45: 319–327.Google Scholar
  86. Van Dover, C. L., 1995. Ecology of Mid-Atlantic Ridge hydrothermal vents. In Parson, C. L. W. L. M. & D. R. Dixon (eds),Hydrothermal Vents and Processes. Geological Society Special Publication, London: 257–294.Google Scholar
  87. Van Dover, C. L., D. Desbruyères, M. Segonzac, T. Comtet, L. Saldanha, A. Fiala-Médioni & C. Langmuir, 1996. Biology of the Lucky Strike hydrothermal field. Deep-Sea Res. 43 (9): 1509–1529.Google Scholar
  88. Von Damm, K. L., 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In Humphris, R. A., Z. D. E. L. S. Mullineaux & R. E. Thompson (eds), Seafloor Hydrothermal Systems. American Geophysical Union: 222–247.Google Scholar
  89. Von Damm, K. L., A. M. Bray, L. G. Buttermore & S.E. Oosting, 1998. The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge. Earth Planet. Sci. Lett 160: 521–536.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • D. Desbruyères
  • A. Almeida
  • M. Biscoito
  • T. Comtet
  • A. Khripounoff
  • N. Le Bris
  • P. M. Sarradin
  • M. Segonzac

There are no affiliations available

Personalised recommendations