, Volume 438, Issue 1–3, pp 1–12 | Cite as

Cyanobacterial dominance in lakes

  • Martin T. Dokulil
  • Katrin Teubner


Cyanobacterial dominance in lakes has received much attention in the past because of frequent bloom formation in lakes of higher trophic levels. In this paper, underlying mechanisms of cyanobacterial dominance are analyzed and discussed using both original and literature data from various shallow mixed and deep stratifying lakes from temperate and (sub)tropical regions. Examples include all four ecotypes of cyanobacteria sensu Mur et al. (1993), because their behavior in the water column is entirely different. Colony forming species (Microcystis) are exemplified from the large shallow Tai Hu, China. Data from a shallow urban lake, Alte Donau in Austria are used to characterize well mixed species (Cylindrospermopsis), while stratifying species (Planktothrix) are analyzed from the deep alpine lake Mondsee. Nitrogen fixing species (Aphanizomenon) are typified from a shallow river-run lake in Germany. Factors causing the dominance of one or the other group are often difficult to reveal because several interacting factors are usually involved which are not necessarily the same in different environments. Strategies for restoration, therefore, depend on both the cyanobacterial species involved and the specific causing situation. Some uncertainty about the success of correctives, however, will remain due to the stochastic nature of the events and pathways leading to cyanobacterial blooms. Truly integrated research programs are required to generate predictive models capable of quantifying key variables at appropriate spatial and temporal scales.

cyanobacteria algal blooms eutrophication nutrients restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agusti, S. & E. J. Phlips, 1991. Light absorption by cyanobacteria: Implications of the colonial growth form. Limnol. Oceanogr. 37: 434–441.Google Scholar
  2. Ahlgren, I., 1993. Scientific basis for the application of in-lake ecotechnologies in eutrophication control. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000. Proc. 5th Int. Conf. Conservation and management of Lakes, Stresa 993: 23–25.Google Scholar
  3. Andersen, T., 1997. Pelagic nutrient cycles. Herbivores as sources and sinks. Springer Verlag, Berlin, Heidelberg, New York: 280 pp.Google Scholar
  4. Berg, K., O. M. Skulberg, R. Skulberg, B. Underdal & T. Willen, 1986. Observations of toxic blue-green algae (Cyanobacteria) in some Scandinavian lakes. Acta Vet. Scand. 27: 440–452.Google Scholar
  5. Blomqvist, P., A. Pettersson & P. Hyenstrand, 1994. Ammoniumnitrogen: A key regulatory factor causing dominance of nonnitrogen-fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164.Google Scholar
  6. Bryant, D. A. (ed.), 1994. The Molecular Biology of Cynaobacteria. Kluwer Academic Publishers, Dordrecht, Boston, London: 881 pp.Google Scholar
  7. Burns, C.W., 1987. Insight into zooplankton-cyanobacteria interactions derived from enclosure experiments. New Zealand J. mar. Freshwat. Res. 21: 477–482.Google Scholar
  8. Cai, Q., X. Gao, Y. Chen, S. Ma & M. Dokulil, 1994. Dynamic variations of water quality in Lake Tai Hu and multivariate analysis of its influential factors. In Sund, H. H.-H. Stabel, W. Geller, X. Yu, K. Yuan & F. She (eds), Environmental Protection and Lake Ecosystem. Proc. Int. Symp.Wuxi March 27-April 1, 1993, China Science and Technology Press, Nanjing: 217–230.Google Scholar
  9. Chorus, I., 1993. Algal metabolites and water quality: Toxins, allergens, and taste-and-odor problems. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000. Proc. 5th Int. Conf. Conservation and management of Lakes, Stresa 1993: 570–572.Google Scholar
  10. Chorus, I., 1995. Cyanobakterientoxine: Kenntnisstand und Forschungsprogramme. Dt. Ges. Limnol. (DGL), Tagungsberichte 1995 (Berlin): Krefeld 1996: 269–280.Google Scholar
  11. Dokulil, M., 1993. Long-term response of phytoplankton population dynamics to oligotrophication in Mondsee, Austria. Verh. int. Ver. Limnol. 25: 657–661.Google Scholar
  12. Dokulil, M. T. & A. Jagsch, 1992. Dynamics of phosphorus and nitrogen loading and its effects on phytoplankton in Mondsee, Austria. Hydrobiologia 243/244 (Dev. Hydrobiol. 79): 389–394.Google Scholar
  13. Dokulil, M. T. & J. Mayer, 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol. Stud. 83: 179–195.Google Scholar
  14. Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.Google Scholar
  15. Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwat. Biol. 42: 537–543.Google Scholar
  16. Findenegg, I., 1971. Unterschiedliche Formen der Eutrophierung von Ostalpenseen. Schweiz. Z. Hydrol. 33: 85–95.Google Scholar
  17. Forsberg, C. & S. O. Ryding, 1980. Eutrophication parameters and trophic state indicies in 30 waste-receiving Swedish lakes. Arch. Hydrobiol. 69: 189–207.Google Scholar
  18. Fott, J., L. Pechar & M. Prazakova 1980. Fish as a factor controlling water quality in ponds. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 255–261.Google Scholar
  19. Foy, R. H. & C. E. Gibson, 1982. Photosynthetic characteristics of planktonic blue-green algae: the response of 20 strains grown under high and low light. Br. phycol. J. 17: 169–182.Google Scholar
  20. Foy, R. H., C. E. Gibson & R. V. Smith, 1976. The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br. phycol. J. 11: 151–163.Google Scholar
  21. Haney, J. F., 1987. Field studies on zooplankton-cyanobacteria interactions. New Zealand J. mar. Freshwat. Res. 21: 467–475.Google Scholar
  22. Humphries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: the role of cell buoyancy. Limnol. Oceanogr. 33: 79–91.Google Scholar
  23. Hyenstrand, P., P. Blomquist & A. Pettersson, 1998. Factors determining cyanobacterial success in aquatic systems-a literature review. Arch. Hydrobiol., Spec. Issues Advanc. Limnol. 51: 41–62.Google Scholar
  24. Ibelings, B. W., 1992. Cyanobacterial water blooms: the role of buoyancy in water columns of varying stability. Thesis Univ. Amsterdam: 171 pp.Google Scholar
  25. Istvánovics, V., H. M. Shafik, M. Présing & S. Juhos, 2000. Growth and phosphate uptake kinetics of the cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwat. Biol. 43: 257–275.Google Scholar
  26. Jackson, D. F., 1984. Ecological factors governing blue-green algal blooms. Purdue Univ. Extension, Serie 117: 402–420.Google Scholar
  27. Jones, G. J. (ed.), 1994. Cyanobacterial Research in Australia. Aust. J. mar. Freshwat. Res. 45: 731–915.Google Scholar
  28. Keating, K. I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.Google Scholar
  29. King, D. L., 1980. The role of carbon in eutrophication. J. Wat. Pollut. Cont. Fed. 42: 2035–2051.Google Scholar
  30. Klemer, A. R., 1976. The vertical distribution of Oscillatoria agardhii var. isothrix. Arch Hydrobiol. 78: 343–362.Google Scholar
  31. Konopka, A., 1982. Physiological ecology of a metalimnetic Oscillatoria rubescens population. Limnol. Oceanogr. 27: 1154–1161.Google Scholar
  32. Konopka, A., 1989. Metalimnetic cyanobacteria in hard-water lakes: buoyancy regulation and physiological state. Limnol. Oceanogr. 34: 1174–1184.Google Scholar
  33. Kromkamp, J. & A. E. Walsby, 1990. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12: 161–183.Google Scholar
  34. Lampert, W., 1987. Laboratory studies on zooplanktoncyanobacteria interactions. New Zealand J. mar. Freshwat. Res. 21: 483–490.Google Scholar
  35. Lindholm, T., J. E. Eriksson & J. A. O. Meriluoto, 1989. Toxic cyanobacteria and water quality problems. Examples from a eutrophic lake on Aland, South West Finland. Wat. Res. 23: 481–486.Google Scholar
  36. Mason, C. F., 1991. Biology of freshwater pollution. 2nd edn. Longman Sci. & Tech., Essex: 351 pp.Google Scholar
  37. Mayer, J., M. T. Dokulil, M. Salbrechter, M. Berger, T. Posch, G. Pfister, A. K. T. Kirschner, B. Velimirov, A. Steitz & T. Ulbricht, 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliophora and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 165–174.Google Scholar
  38. McQueen, D. J. & D. R. S. Lean, 1987. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Can. J. Fish. aquat. Sci. 44: 598–604.Google Scholar
  39. Mur, L. R., H. Schreurs & P. Visser, 1993. How to control undesirable cyanobacterial dominance. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000 Proc. 5th Int. Conf. Conservation and management of Lakes, Stresa 1993: 565–569.Google Scholar
  40. Murphy, T. P., D. R. S. Lean & C. Nalewajko, 1976. Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192: 900–902.Google Scholar
  41. Niklisch, A. & J.-G. Kohl, 1989. The influence of light on the primary production of two planktic blue-green algae. Arch. Hydrobiol., Ergeb. Limnol. 33: 451–455.Google Scholar
  42. Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343 (Dev. Hydrobiol. 119): 355–365.Google Scholar
  43. Pettersson, K., E. Herlitz & V. Istvanovics, 1993. The role of Gloeotrichis echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia 253: 123–129.Google Scholar
  44. Pizzolon, L., B. Tracanna, C. Prósperi & J. M. Guerrero, 1999. Cyanobacterial blooms in Argentinean inland waters. Lakes & Reservoirs 4: 101–105.Google Scholar
  45. Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.Google Scholar
  46. Reuter, J. G. & R. R. Petersen, 1987. Micronutrient effects on cynobacterial growth and physiology. New Zealand J. mar. Freshwat. Res. 21: 435–445.Google Scholar
  47. Reynolds, C. S., 1987. Cyanobacterial water-blooms. In Callow, P. (ed.), Advances in Botanical Research 13. Academic Press, London: 67–143.Google Scholar
  48. Reynolds, C. S., 1991. Toxic blue-green algae: the problem in perspective. Freshwat. For. 1: 29–38.Google Scholar
  49. Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand J. mar. Freshwat. Res. 21: 379–390.Google Scholar
  50. Ridge, I., J. Walters & M. Street, 1999. Algal growth control by terrestrial leaf litter: a realistic tool? Hydrobiologia 395/396 (Dev. Hydrobiol. 136): 173–180.Google Scholar
  51. Robarts, R. S., 1985. Hypertrophy, a consequence of development. Int. J. envir. Stud. 12: 72–89.Google Scholar
  52. Robarts, R. S. & T. Zohary, 1987. Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria. New Zealand J. mar. Freshwat. Res. 21: 391–399.Google Scholar
  53. Rönicke, H., H. Klapper & M. Beyer, 1993. Control of phosphorus and blue-greens by nutrient preipitation: long-term case study. In Giussani, G. & C. Callieri (eds), Strategies for Lake Ecosystems Beyond 2000. Proc. 5th Int. Conf. Conservation and Management of Lakes, Stresa 1993: 177–179.Google Scholar
  54. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. Van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow turbid lakes. Ecology 78: 272–282.Google Scholar
  55. Schreurs, H., 1992. Cyanobacterial dominance. Relations to eutrophication and lake morphology. Doctoral thesis, Univ. Amsterdam: 198 pp.Google Scholar
  56. Shapiro, J., 1984. Blue-green dominance in lakes: the role and management significance of pH and CO2. Int. Rev. ges. Hydrobiol. 69: 765–780.Google Scholar
  57. Shapiro, J., 1990. Current beliefs regarding dominance of bluegreens: the case for the importance of CO2 and pH. Verh. int. Ver. Limnol. 24: 38–54.Google Scholar
  58. Shapiro, J., 1997. The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshwat. Biol. 37: 307–323.Google Scholar
  59. Sigee, D. C., R. Glenn, M. J. Andrews, E. G. Bellinger, R. D. Butler, H. A. S. Epton & R. D Hendry, 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396 (Dev. Hydrobiol. 136): 161–172.Google Scholar
  60. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.Google Scholar
  61. Smith, V. H., E. Willén & B. Karlsson, 1987. Predicting the summer peak biomass of four species of blue-green algae (Cyanophyta/Cyanobacteria) in Swedish lakes. Wat. Res. Bull. 23: 397–402.Google Scholar
  62. Spencer, C. N. & D. L. King, 1989. Role of light, carbon dioxide and nitrogen in regulation of buoyancy, growth and bloom formation of Anabaena flos-aquae. J. Plankton Res. 11: 283–296.Google Scholar
  63. Stanier, R. Y. & G. Cohen-Bazire, 1977. Phototrophic prokaryotes: The Cyanobacteria. Ann. Rev. Microbiol. 31: 225–274.Google Scholar
  64. Steinberg, Ch. & H. Hartmann, 1988a. Planktische blütenbildende Cyanobakterien (Blaualgen) und die Eutrophierung von Seen und Flüssen. Vom Wasser 70: 1–10.Google Scholar
  65. Steinberg, Ch. E. W. & H. M. Hartmann, 1988b. Planktonic bloomforming cyanobacteria and the eutrophication of lakes and rivers. Freshwat. Biol. 20: 279–287.Google Scholar
  66. Teubner, K., 1996. Struktur und Dynamik des Phytoplanktons in Beziehung zur Hydrochemie und Hydrophysik der Gewässer. Eine multivariate statistische Analyse an ausgewählten Gewässern der Region Berlin-Brandenburg. Diss. Humboldt-Univ. Berlin: 231 pp.Google Scholar
  67. Teubner, K., 2000. Synchronised changes of planktonic and diatom assemblages in North German waters reduce seasonality to two principal periods. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 55: 565–580.Google Scholar
  68. Teubner, K., R. Feyerabend, M. Henning, A. Nicklisch, P. Woitke & J.-G. Kohl, 1997. Alternative blooming of Aphanizomenon flos-aquae or Planktothrix agardhii induced by the timing of the critical nitrogen:phosphorus ratio in hypertrophic riverine lakes. Arch. Hydrobiol., Adv. Limnol 54: 325–344.Google Scholar
  69. Teubner, K., K. Donabaum, W. Kabas, A. Kirschner, G. Pfister, M. Salbrechter & M. T. Dokulil, 1999. What are the differential consequences on components of a planktonic food web induced by in-lake restoration of a shallow urban seepage lake? Proceedings of the 8th Int. Conf. on Conservation and Management of Lakes, Lake 1999, Sustainable Lake Management, Kopenhagen, Vol. II: S8A-6.Google Scholar
  70. Tilman, D. & R. L. Kiesling, 1984. Freshwater algal ecology: taxonomic tradeoffs in the temperature dependence of nutrient competitive abilities. In Klug, M. J. & V. A. Reddy (eds), Current Problems in Microbial Ecology. Proc. 3rd Int. Symp. Microbial Ecol. Am. Soc. Microbiol, Washington, D.C.Google Scholar
  71. Trimbee, A. M. & G. P. Harris, 1984. Phytoplankton dynamics of a small reservoir: use of sedimentation traps to quantify the loss of diatoms and recruitment of summer bloom-forming blue-green algae. J. Plankton Res. 5: 897–918.Google Scholar
  72. Trimbee, A. M. & E. E. Prepas, 1988. The effect of oxygen depletion on the timing and magnitude of blue-green algal blooms. Verh. int. Ver. Limnol. 23: 220–226.Google Scholar
  73. Walsby, A. E., 1987. Cyanobacteria: planktonic gas-vacuolated forms. In Starr, M., H. Stolp, H. Truper, A. Balows & H. G. Schlegel (eds), The Prokaryotes. Springer Verlag, New York: 224–235.Google Scholar
  74. Zevenboom, W. & L. R. Mur, 1980. N2-fixing cyanobacteria: why they do not become dominant in Dutch hypertrophic lakes. In Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers The Hague: 123–130.Google Scholar
  75. Zimmermann, U., 1969. Ökologische und physiologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur. Schweiz. Z. Hydrol. 31: 1–58.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Martin T. Dokulil
    • 1
  • Katrin Teubner
    • 1
  1. 1.Institute of LimnologyAustrian Academy of SciencesMondseeAustria

Personalised recommendations