Foundations of Physics

, Volume 31, Issue 1, pp 7–26

Quasiclassical Born–Oppenheimer Approximations

  • Oleg Zaitsev
  • R. Narevich
  • R. E. Prange
Article

Abstract

We discuss several problems in quasiclassical physics for which approximate solutions were recently obtained by a new method, and which can also be solved by novel versions of the Born–Oppenheimer approximation. These cases include the so-called bouncing ball modes, low angular momentum states in perturbed circular billiards, resonant states in perturbed rectangular billiards, and whispering gallery modes. Some rare, special eigenstates, concentrated close to the edge or along a diagonal of a nearly rectangular billiard are found. This kind of state has apparently previously escaped notice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971); Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).Google Scholar
  2. 2.
    A. Voros, J. Phys. A21, 685 (1988). P. Cvitanovic and B. Eckhardt, Phys. Rev. Lett. 63, 823 (1989). M. V. Berry and J. P. Keating, Proc. R. Soc. London, Ser. A 437, 151 (1992). E. Doron and U. Smilansky, Phys. Rev. Lett. 68, 1255 (1992).Google Scholar
  3. 3.
    E. B. Bogomolny, Nonlinearity 5, 805 (1992), and references therein.Google Scholar
  4. 4.
    R. Blümel et al., Phys. Rev. E 53, 3284 (1996).Google Scholar
  5. 5.
    R. E. Prange, R. Narevich, and O. Zaitsev, Phys. Rev. E 59, 1694 (1999).Google Scholar
  6. 6.
    F. Borgonovi et al, Phys. Rev. Lett. 77, 4744 (1996). J. U. No ckel and A. D. Stone, Nature 385, 45 (1997). K. M. Frahm and D. M. Shepelyansky, Phys. Rev. Lett. 78, 1440 (1997). ibid. 79, 1833 (1997). F. Borgonovi, Phys. Rev. Lett. 80, 4653 (1998).Google Scholar
  7. 7.
    K. Richter, D. Ullmo, and R. A. Jalabert, Phys. Reports 276, 1 (1996). K. Richter, Habilitationsschrift der Universitat Augsburg (Max Planck-Institut, Dresden, 1997). M. Brack and R. K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, 1997).Google Scholar
  8. 8.
    H. Primack and U. Smilansky, J. Phys. A: Math. Gen. 27, 4439 (1994).Google Scholar
  9. 9.
    L. Kaplan and E. J. Heller, Physica D 121, 1 (1998).Google Scholar
  10. 10.
    M. Born and J. R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927).Google Scholar
  11. 11.
    Lord Rayleigh, Phil. Mag. 27, 100 (1914).Google Scholar
  12. 12.
    C. Dembowski et al., Phys. Rev. Lett. 84, 867 (2000).Google Scholar
  13. 13.
    A. Wallraff et al., Phys. Rev. Lett. 84, 151 (2000).Google Scholar
  14. 14.
    J. B. Keller and S. I. Rubinow, Ann. Phys. (New York) 9, 24 (1960).Google Scholar
  15. 15.
    M. A. Leontovich, Izv. Akad. Nauk SSSR, Ser. Fiz. 8, 16 (1944).Google Scholar
  16. 16.
    V. A. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 10(2), 171 (1946) [J. Phys. USSR 10, 399 (1946)]; Electromagnetic Diffraction and Propagation Problems (2nd edn., Sovetskoe Radio, Moscow, 1970; 1st edn., Pergamon, Oxford, 1965).Google Scholar
  17. 17.
    V. M. Babich and V. S. Buldyrev, Short Wavelength Diffraction Theory (Springer, Berlin, 1991).Google Scholar
  18. 18.
    For example, G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969). A. Messiah, Quantum Mechanics, Vol. II (Wiley, New York, 1966).Google Scholar
  19. 19.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. II (McGraw-Hill, New York, 1953).Google Scholar
  20. 20.
    Y. Y. Bai et al, Phys. Rev. A 31, 2821 (1985).Google Scholar
  21. 21.
    S. W. McDonald, Ph.D. Thesis (Berkeley, 1983).Google Scholar
  22. 22.
    R. Narevich, R. E. Prange, and O. Zaitsev, Phys. Rev. E 62, 2046 (2000).Google Scholar
  23. 23.
    J. Lindhard, Dan. Mat. Fys. Medd. 34(14) (1965).Google Scholar
  24. 24.
    M. Sieber, Phys. Rev. E 60, 3982 (1999). E. Bogomolny, N. Pavloff and C. Schmit, Phys. Rev. E 61, 3689-3711 (2000). S. Rahav and S. Fishman, to be published, this issue.Google Scholar
  25. 25.
    R. Narevich, R. E. Prange, and Oleg Zaitsev, Physica E, to be published.Google Scholar
  26. 26.
    V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions (Springer, Berlin, 1993).Google Scholar
  27. 27.
    Handbook of Mathematical Functions, M. Abramowitz and I. Stegun, eds. (Dover, New York, 1965).Google Scholar
  28. 28.
    G. D. Birkhoff, Dynamical Systems (Am. Math. Soc., New York, 1966), Vol. IX. F. G. Gustavson, Astron. J. 71, 670 (1966).Google Scholar
  29. 29.
    V. I. Arnol'd, Funktional. Anal. i Prilozen. 6, 12 (1972) [Functional Anal. Appl. 6, 94 (1972)]. 26 Zaitsev, Narevich, and PrangeGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Oleg Zaitsev
    • 1
  • R. Narevich
    • 2
  • R. E. Prange
    • 1
  1. 1.Department of PhysicsUniversity of MarylandCollege Park
  2. 2.Department of Physics and AstronomyUniversity of KentuckyLexington

Personalised recommendations