International Journal of Theoretical Physics

, Volume 40, Issue 4, pp 875–901 | Cite as

n-Dimensional Gravity: Little Black Holes, Dark Matter, and Ball Lightning

  • Mario Rabinowitz
Article

Abstract

The gravitational field and radiation from quantized gravitational atoms and little black holes (LBH) are analyzed in n-space, that is, in all dimensions from 0 to ∞, to develop insights into possible additional compacted dimensions as predicted by hierarchy and string theory. It is shown that the entropy of LBH is significantly greater in higher dimensional space, with potential implications for the initial entropy of the universe. A case is made that LBH are the dark matter of the universe, and can manifest themselves as the core energy source of ball lightning (BL). The LBH incidence rate on earth is related to BL occurrence and has the potential of aiding in the determination of the distribution of LBH and hence dark matter in the universe. Possibilities are explored as to why Hawking radiation has been undetected in over 25 years. An alternate LBH tunneling radiation model is described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Allen, B., Blackburn, J. K., Brady, P. R., Creighton, J. D. E., Creighton, T., Droz, S., Gillespie, A. D., Hughes, S. A., Kawamura, S., Byons, T. T., Mason, J. E., Owen, B. J., Raab, F. J., Rege, M. W. Jr., Sathyaprakash, B. S., Savage, R. L. Jr., Whitcomb, S., and Wiseman, A. G. (1999). Physical Review Letters 83, 1498.Google Scholar
  2. Argyres, P. C., Dimopoulos, S., and March-Russell, J. (1998). Physical Letters B 441, 96.Google Scholar
  3. Arkani-Hamed, Dimopoulos, S., and Dvali, G. (1998). Physical Letters B 429, 263.Google Scholar
  4. Balbinot, R. (1986). Classical Quantum Gravity 3, L107.Google Scholar
  5. Balbinot, R., Fabbri, A., and Shapiro, I. (1999). Physical Review Letters 83, 1494.Google Scholar
  6. Barry, J. D. and Singer, S. (1988). Science of Ball Lightning, World Scientific, Singapore.Google Scholar
  7. Bekenstein, J. D. (1972). Nuovo Cimento Letters 4, 737.Google Scholar
  8. Bekenstein, J. D. (1973). Physical Review D 7, 2333.Google Scholar
  9. Bekenstein, J. D. (1974). Physical Review D 9, 3292.Google Scholar
  10. Belinski, V. A. (1995). Physical Letters A 209, 13.Google Scholar
  11. Coxeter, H. S. M. (1948). Regular Polytropes, Methuen & Co., London.Google Scholar
  12. Davies, P. (1975). Journal of Physics A 8, 609.Google Scholar
  13. Davies, P. (1992). The New Physics, Cambridge University Press, Great Britain.Google Scholar
  14. De Sabbata, V. and Sivaram, C. (1992). Black Hole Physics, Kluwer Academic Publishers, Boston.Google Scholar
  15. Dicke, R. (1961). Nature 192, 440.Google Scholar
  16. Dirac, P. A. M. (1937). Nature 139, 323.Google Scholar
  17. Dirac, P. A. M. (1938). Proceedings of Royal Society of London A 165, 199.Google Scholar
  18. Dirac, P. A. M. (1961). Nature 192, 441.Google Scholar
  19. Dirac, P. A. M. (1973). Proceedings of Royal Society London A 333, 403.Google Scholar
  20. Fryberger, D. (1994). Proceedings of Unidentified Atmospheric Lightning Phenomenon 1.Google Scholar
  21. Georgi, H., Quinn, H. R., and Weinberg, S. (1974). Physical Review Letters 33, 451.Google Scholar
  22. Gribb, A. A. (1989). International Journal of Theoretical Physics 28, 1099.Google Scholar
  23. Hawking, S. W. (1974). Nature 248, 30.Google Scholar
  24. Hawking, S. W. (1975). Communications in Mathematical Physics 43, 199.Google Scholar
  25. Rabinowitz, M. (1990a). IEEE Power Engineering Review 10(4), 27.Google Scholar
  26. Rabinowitz, M. (1990b). IEEE Power Engineering Review 10(11), 8.Google Scholar
  27. Rabinowitz, M. (1999a). Astrophysics and Space Science 262, 391.Google Scholar
  28. Rabinowitz, M. (1999b). IEEE Power Engineering Review Letters 19(3), 65.Google Scholar
  29. Rabinowitz, M. (1999c). Physics Essays 12, 346.Google Scholar
  30. Rubin, V. C. (1983). Science 220, 1339.Google Scholar
  31. Singer, S. (1971). The Nature of Ball Lightning, Plenum Press, New York, NY.Google Scholar
  32. Smirnov, B. M. (1993). Physics Reports 224, 151.Google Scholar
  33. Thorne, K. S., Price, R. H., and Macdonald, D. A. (1986). Black Holes: The Membrane Paradigm, Yale, New Haven, CT.Google Scholar
  34. Turman, B. N. (1977). Journal of Geophysical Research 82, 2566.Google Scholar
  35. Turner, M. S. and Tyson, J. A. (1999). Reviews of Modern Physics 71, S145.Google Scholar
  36. Uman, M. A. (1968). Journal of Atmospheric and Terrestrial Physics 30, 1245.Google Scholar
  37. Unrah, W. G. (1976). Physical Review D 14, 870.Google Scholar
  38. Unrah, W. G. and Wald, R. M. (1982). Physical Review D 25, 942.Google Scholar
  39. Unrah, W. G. and Wald, R. M. (1984). Physical Review D 29, 1047.Google Scholar
  40. Wald, R. M. (1977). Communications in Mathematical Physics 54, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Mario Rabinowitz
    • 1
  1. 1.Armor ResearchRedwood City

Personalised recommendations