Advertisement

Hydrobiologia

, Volume 440, Issue 1–3, pp 299–305 | Cite as

Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus

  • Henrik Pavia
  • Gunilla B. Toth
Article

Abstract

Phlorotannins, C-based defence compounds in brown seaweeds, show a high degree of spatial and temporal variation within seaweed species. One important model explaining this variation is the Carbon Nutrient Balance Model (CNBM), which states that the relative supply of carbon and limiting nutrients will determine the level of defence compounds in plants. Nitrogen is often considered to be the limiting nutrient for marine macroalgal growth and the CNBM thus predicts that when the carbon:nitrogen ratio is high, photosynthetically fixed carbon will be allocated to production of phlorotannins. In the present study, we evaluated the effects of light (i.e. carbon) and nitrogen on the phlorotannin content of two intertidal brown seaweeds, Ascophyllum nodosum and Fucus vesiculosus. This was done in an observational field study, as well as in a manipulative experiment where plants from habitats with different light regimes were subjected to different nitrogen and light treatments, and their phlorotannin content was measured after 14 days. The results showed that there was a negative relationship between tissue nitrogen and phlorotannin content in natural populations of F. vesiculosus, but not in A. nodosum. In the short term, the phlorotannin content in both algal species was not affected by changes in nitrogen availability. Exposure to sunlight had a positive effect on the phlorotannin content in natural populations of both algal species but, in the manipulative experiment, only F. vesiculosus showed a rapid response to changes in light intensities. Plants subjected to sunlight contained higher phlorotannin content than shaded plants. In conclusion, the results imply that nitrogen availability explains some of the natural variation in the phlorotannin content of F. vesiculosus, but the light environment has greater importance than nitrogen availability in predicting the phlorotannin content of each species.

Ascophyllum Fucus CNBM light nitrogen phlorotannins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åberg, P., 1992. A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73: 1473–1487.Google Scholar
  2. Arnold, T. M., C. E. Tanner & W. I. Hatch, 1995. Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar. Ecol. Prog. Ser. 123: 177–183.Google Scholar
  3. Berenbaum, M. R., 1995. The chemistry of defence: theory and practice. Proc. natn. Acad. Sci. U.S.A. 92: 2–8.Google Scholar
  4. Berthold, G., 1882. Beiträge zur Morpholgie und Physiologie der Meeresalgen. Jahrb. Wiss. Bot. 13: 569–717.Google Scholar
  5. Bryant, J. P., F. S. III Chapin & D. R. Klein, 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357–368.Google Scholar
  6. Bryant, J. P., J. P. Kuropat, S. M. Cooper, K. Frisby & N. Owen-Smith, 1989. Resource availability hypothesis of plant antiherbivore defence tested in South African savanna ecosystem. Nature 340: 227–228.Google Scholar
  7. Carlson, D. J. & M. L. Carlson, 1984. Reassessment of exudation by fucoid macroalgae. Limnol. Oceanogr. 29: 1077–1087.Google Scholar
  8. Carlson, L., 1991. Seasonal variation in growth, reproduction and nitrogen content of Fucus vesiculosus L. in the Öresund, Southern Sweden. Bot. mar. 34: 447–453.Google Scholar
  9. Chapman, A. R. O. & J. S. Craigie, 1977. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40: 197–205.Google Scholar
  10. Crato, E., 1896. Beiträge zur anatomie und physiologie das elementarorganismus. Beitr. Biol. Pflanz. 7: 407–535.Google Scholar
  11. Cronin, G. & M. E. Hay, 1996. Effects of light and nutrient availability on the growth, secondary chemistry and resistance to herbivory of two brown seaweeds. Oikos 77: 93–106.Google Scholar
  12. Fajer, E. D., M. D. Bowers & F. A. Bazzaz, 1992. Effects of nutrients and enriched CO2 environment on production of carbonbased allelochemicals in plantago-a test of the carbon nutrient balance hypothesis. Am. Nat. 140: 707–723.Google Scholar
  13. Hammerstrom, K., M. N. Dethier & D. O. Duggins, 1998. Rapid phlorotannin induction and relaxation in five Washington kelps. Mar. Ecol. Prog. Ser. 165: 293–305.Google Scholar
  14. Hanisak, M. D., 1983. The nitrogen relationships of marine macroalgae. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in the Marine Environment. Academic Press, New York: 699–730.Google Scholar
  15. Hay, M. & P. D. Steinberg, 1992. The chemical ecology of plantherbivore interactions in marine versus terrestrial communities. In Rosenthal, G. A. & M. R. Berenbaum (eds), Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York: 371–413.Google Scholar
  16. Herms, D. A. & W. J. Mattson, 1992. The dilemma of plants: to grow or defend. Quart. Rev. Biol. 67: 283–335.Google Scholar
  17. Ilvessalo, H. & J. Tuomi, 1989. Nutrient availability and accumulation of phenolic compounds in the brown alga Fucus vesiculosus. Mar. Biol. 101: 115–119.Google Scholar
  18. Jennings, J. & P. D. Steinberg, 1994. In situ exudation of phlorotannins by the sublittoral kelp Ecklonia radiata. Mar. Biol. 121: 349–354.Google Scholar
  19. Jennings, J. & P. D. Steinberg, 1997. Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109: 461–473.Google Scholar
  20. Karban, R. & I. T. Baldwin, 1997. Induced responses to herbivory. The University of Chicago Press, Chicago: 319 pp.Google Scholar
  21. Karez, C. S. & R. C. Pereira, 1995. Metal contents in polyphenolic fractions extracted from the brown alga Padina gymnospora. Bot. mar. 28: 151–155.Google Scholar
  22. Koricheva, J., S. Larsson, E. Haukioja & M. Keinänen, 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83: 212–226.Google Scholar
  23. Lau, S. C. K. & P.-Y. Qian, 1997. Phlorotannins and related compounds as larval settlement inhibitors of the tube-building polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 159: 219–227.Google Scholar
  24. Lazo, L., J. H. Markham & A. R. O. Chapman, 1994. Herbivory and harvesting: effects on sexual recruitment and vegetative modules of Ascophyllum nodosum. Ophelia 40: 95–113.Google Scholar
  25. Lowell, R. B., J. H. Markham & K. Mann, 1991. Herbivore-like damage induces increased strength and toughness in a seaweed. Proc. r. Soc. Lond. B, Biol. Sci. 243: 31–38.Google Scholar
  26. Pavia, H. & E. Brock, 2000. Extrinsic factors influencing phlorotannin production in the brown seaweed Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 193: 285–294.Google Scholar
  27. Pavia, H., G. Toth & P. Åberg, 1999. Trade-offs between phlorotannin production and annual growth in natural populations of the brown seaweed Ascophyllum nodosum. J. Ecol. 87: 761–771.Google Scholar
  28. Pavia, H., G. Cervin, A. Lindgren & P. Åberg, 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157: 139–146.Google Scholar
  29. Peckol, P., J. M. Krane & J. L. Yates, 1996. Interactive effects of inducible defence and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar. Ecol. Prog. Ser. 138: 209–217.Google Scholar
  30. Pedersen, A., 1984. Studies on phenol content and heavy metal uptake in fucoids. Hydrobiologia 116/117: 498–504.Google Scholar
  31. Ragan, M. A. & K.-W. Glombitza, 1986. Phlorotannins, brown algal polyphenols. Prog. Phycol. Res. 4: 129–241.Google Scholar
  32. Reichardt, P. B., F. S. III Chapin, J. P. Bryant, B. R. Mattes & T. P. Clausen, 1991. Carbon/nutrient balance as a predictor of plant defence in Alaskan balsam poplar: potential importance of metabolic turnover. Oecologia 88: 401–406.Google Scholar
  33. Schoenwaelder, M. E. A. & M. N. Clayton, 1998. Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (Fucales, Phaeophyceae). J. Phycol. 34: 969–980.Google Scholar
  34. Sieburth, J. M., 1969. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. exp. mar. Biol. Ecol. 3: 290–309.Google Scholar
  35. Sieburth, J. M. & T. J. Conover, 1965. Sargassum tannin, an antibiotic which retards fouling. Nature 208: 52–53.Google Scholar
  36. Steinberg, P. D., 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In Paul, V. J. (ed.), Ecological Roles of Marine Natural Products. Cornell University, New York: 51–92.Google Scholar
  37. Stengel, D. B. & M. J. Dring, 1997. Morphology and in situ growth rates of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur. J. Phycol. 32: 193–202.Google Scholar
  38. Targett, N. M. & T. M. Arnold, 1998. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 36: 195–205.Google Scholar
  39. Toth, G. & H. Pavia, 2000. Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increasing copper concentrations. Mar. Ecol. Prog. Ser. 192: 119–126.Google Scholar
  40. Tugwell, S. & G. M. Branch, 1989. Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis augustifolia in relation to plant-defence theory. J. exp. mar. Biol. Ecol. 129: 219–230.Google Scholar
  41. Underwood, A. J., 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge: 504 pp.Google Scholar
  42. Van Alstyne, K. L., 1995. Comparison of three methods for quantifying brown algal polyphenolic compounds. J. Chem. Ecol. 21: 45–58.Google Scholar
  43. Van Alstyne, K. L., J. J. III McCarthy, C. L. Hustead & D. O. Duggins, 1999a. Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds. Mar. Biol. 133: 371–379.Google Scholar
  44. Van Alstyne, K. L., J. J. McCarthy, C. L. Hustead & L. J. Kearns, 1999b. Phlorotannin allocation among tissues of northeastern pacific kelps and rockweeds. J. Phycol. 35: 483–492.Google Scholar
  45. Williams, G. A., 1990. The comparative ecology of the flat periwinkles Littorina obtusata (L.) and L. mariae Sacchi et Rastelli. Field Studies 7: 469–482.Google Scholar
  46. Yates, J. L. & P. Peckol, 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74: 1757–1766.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Henrik Pavia
  • Gunilla B. Toth

There are no affiliations available

Personalised recommendations