The Histochemical Journal

, Volume 32, Issue 12, pp 725–731 | Cite as

Atrial Natriuretic Peptide and Guanylin-activated Guanylate Cyclase Isoforms in Human Sweat Glands

  • Antonio Spreca
  • Stefano Simonetti
  • Maria Grazia Rambotti


The ultracytochemical localization of membrane-bound guanylate cyclases A and C, stimulated by atrial natriuretic peptide and guanylin respectively, has been studied in human sweat glands. The results showed that the peptides stimulated guanylate cyclases A and C in both eccrine and apocrine glands. In the secretory cells, enzymatic activity was present on the plasma membranes and on intracellular membranes involved in the secretory mechanism. In eccrine glands, the cells of the excretory duct also presented enzymatic activity on the plasma membranes. In both glands, myoepithelial cells, surrounding the secretory cells, exhibited only guanylate cyclase A activity. These localizations of enzymatic activity suggest a role for both atrial natriuretic peptide and guanylin in regulating glandular secretion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bianciotti LG, Elverdin JC, Vatta MS, Colatrella C, Fernández BE (1994) Atrial natriuretic factor enhances induced salivary secretion in the rat. Regul Pept 49: 195-202.Google Scholar
  2. Bianciotti LG, Elverdin JC, Vatta MS, Fernández BE (1996) Atrial natriuretic factor modifies the composition of induced-salivary secretion in the rat. Regul Pept 65: 139-143.Google Scholar
  3. Crawford I, Malone PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Cell Biol 88: 9262-9266.Google Scholar
  4. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: An endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89: 947-951.Google Scholar
  5. Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors and their ligands. Endocrine Rev 15: 135-162.Google Scholar
  6. Fan X, Hamra FK, London RM, Eber SL, Krause WJ, Freeman RH, Smith CE, Currie MG, Forte LR (1997a) Structure and activity of uroguanylin and guanylin from the intestine and urine of rats. Am J Physiol 273: E957-E964.Google Scholar
  7. Fan X, Wang J, London RM, Eber SL, Krause WJ, Freeman RH, Forte LR (1997b) Signaling pathways for guanylin and uroguanylin in the digestive, renal, central nervous, reproductive and lymphoid systems. Endocrinology 138: 4636-4648.Google Scholar
  8. Fernández BE, Bianciotti LG, Vatta MS, Dominguez AE (1993) Atrial natriuretic factor modifies bile flow and composition in the rat. Regul Pept 43: 177-184.Google Scholar
  9. Fonteles MC, Greenberg RN, Monteiro HS, Currie MG, Forte LR (1998) Natriuretic and kaliuretic activities of guanylin and uroguanylin in the isolated perfused rat kidney. Am J Physiol 275: F191-F197.Google Scholar
  10. Forte LR, Currie MG (1995) Guanylin: a peptide regulator of epithelial transport. FASEB J 9: 643-650.Google Scholar
  11. Goraczniak RM, Duda T, Sharma RK (1992) A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282: 533-537.Google Scholar
  12. Greger R (1996) The formation of sweat. In: Greger R, Windhorst U, eds. ComprehnsiveHumanPhysiology Vol. 2. Berlin, Heidelberg: Springer-Verlag pp. 2219-2228.Google Scholar
  13. Guba M, Kuhn M, Forssmann W-G, Classen M, Gregor M, Seidler U (1996) Guanylin strongly stimulates rat duodenal HCO3- secretion: proposed mechanism and comparison with other secretagogues. Gastroenterology 111: 1558-1568.Google Scholar
  14. Hamra FK, Eber SL, Chin DT, Currie MG, Forte LR (1997) Regulation of intestinal uroguanylin/guanylin receptor-mediated responses by mucosal acidity. Proc Natl Acad Sci USA 94: 2705-2710.Google Scholar
  15. Hamra FK, Krause WJ, Eber SL, Freeman RH, Smith CE, Currie MG, Forte LR (1996) Opossum colonic mucosa contains uroguanylin and guanylin peptides. Am J Physiol 270: G708.Google Scholar
  16. Kang JH, Sahai A, Criss WE, West WL (1982) Ultracytochemical localization of estrogen-stimulated guanylate cyclase in rat uterus. J Histochem Cytochem 30: 331-342.Google Scholar
  17. Khare S, Wilson D, Wali RK, Tien X-Y, Bissonnette M, Niedziele SM, Bolt JG, Sitrin MD, Brasitus TA (1994) Guanylin activates rat colonic particulate guanylate cyclase. Biochem Biophys Res Commun 203: 1432-1437.Google Scholar
  18. Marala RB, Duda T, Goraczniak RM, Sharma RK (1992) Genetically tailored atrial natriuretic factor-dependent guanylate cyclase. Immunological and functional identity with 180 kDa membrane guanylate cyclase and ATP signaling site. FEBS Lett 296: 254-258.Google Scholar
  19. Marala RB, Sitaramayya A, Sharma RK (1991) Dual regulation of natriuretic factor-dependent guanylate cyclase activity by ATP. FEBS Lett 281: 73-76.Google Scholar
  20. Matsushita K, Nishida Y, Hosomi H, Tanaka S (1991) Effects of atrial natriuretic peptide on water and NaCl absorption across the intestine. Am J Physiol 260: R6-R12.Google Scholar
  21. Mörk AC, Hongpaisan J, Roomans GM (1995) Ion transport in primary cultures from human sweat gland coils studied with X-ray microanalysis. Cell Biol Int 19: 151-159.Google Scholar
  22. O'Donnell ME (1989) Regulation of Na-K-Cl cotransport in endothelial cells by atrial natriuretic factor. Am J Physiol 257: C36-C44.Google Scholar
  23. Poeggel G, Luppa H (1988) Histochemistry of nucleotidyl cyclase and cyclic nucleotide phosphodiesterases. Histochem J 20: 249-268.Google Scholar
  24. Rambotti MG, Ercolani P, Spreca A (1993) Ultracytochemical localization of particulate guanylate cyclase in rat adrenal gland exposed to stimulation by porcine brain natriuretic peptide. Histochem J 25: 384-391.Google Scholar
  25. Rambotti MG, Giambanco I, Spreca A (1997) Detection of guanylate cyclases A and B stimulated by natriuretic peptides in gastroenteric tract of rat. Histochem J 29: 117-126.Google Scholar
  26. Rambotti MG, Giambanco I, Spreca A (2000) Ultracytochemical detection of guanylate cyclase-C activity in alimentary tract and associated glands of rat. Influence of pH, ATP and ions Mg2+ and Mn2+. Histochem J (in press).Google Scholar
  27. Rambotti MG, Spreca A (1991) Ultracytochemical demonstration of guanylate cyclase in rat lung after incubation by ANF. Cell Mol Biol 37: 455-462.Google Scholar
  28. Reddy MM, Quinton PM (1994) Rapid regulation of electrolyte absorption in sweat duct. J Membr Biol 140: 57-67.Google Scholar
  29. Scavone C, Scanlon C, McKee M, Nathanson JA (1995) Atrial natriuretic peptide modulates sodium and potassium-activated adenosine triphosphate through a mechanism involving cyclic GMP and cyclic GMP-dependent protein kinase. J Pharmacol Exp Ther 272: 1036-1043.Google Scholar
  30. Schulze W, Krause EG (1983) Cytochemical demonstration of guanylate cyclase activity in cardiac muscle. Histochemistry 77: 243-254.Google Scholar
  31. Scott RB, Maric M (1991) The effect of atrial natriuretic peptide on small intestine contractility and transit. Peptides 12: 799-803.Google Scholar
  32. Skofitsch G, Jacobowitz DM (1988) Atrial natriuretic peptide in the central nervous system. Cell Mol Neurobiol 8: 339-391.Google Scholar
  33. Spreca A, Giambanco I, Rambotti MG (1998) Guanylate cyclase-A in sebaceous glands. It J Anat Embriol (suppl) 103: 168.Google Scholar
  34. Spreca A, Giambanco I, Rambotti MG (1999) Ultracytochemical study of guanylate cyclase A and B in light-and dark-adapted retinas. Histochem J 31: 477-483.Google Scholar
  35. Spreca A, Rambotti MG (1994) Ultracytochemical localization of particulate guanylate cyclase after stimulation with natriuretic peptides in lamb olfactory mucosa. Histochem J 26: 778-786.Google Scholar
  36. Waldman SO, Rapoport RM, Murad F (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259: 14332-14334.Google Scholar
  37. Yeung VTF, Lai CK, Cockram CS, Joung JD, Nicholls MG (1991) Binding of brain and atrial natriuretic peptides to cultured mouse astrocytes and effect on cyclic GMP. J Neurochem 56: 1684-1689.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Antonio Spreca
    • 1
  • Stefano Simonetti
    • 2
  • Maria Grazia Rambotti
    • 1
  1. 1.Section of Anatomy, Department of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Section of Dermatology and Venereology, Department of DermatologyUniversity of PerugiaItaly

Personalised recommendations