, Volume 118, Issue 2, pp 153–166 | Cite as

Tissue culture-derived variation in crop improvement

  • S. Mohan Jain


Tissue culture generates a wide range of genetic variation in plant species which can be incorporated in plant breeding programmes. By in vitro selection, mutants with useful agronomic traits, e.g. salt or drought tolerance or disease resistance, can be isolated in a short duration. The successful use of somaclonal variation is very much dependent on its genetic stability in the subsequent generations for which molecular markers such as RAPDs, AFLPs, SSRs and others can be helpful. The potential of somaclonal variation has yet to be fully exploited by breeders, even though a few cultivars have been developed in crops such as Brassica juncea, rice and others.

DNA methylation in vitro selection molecular markers somaclonal variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins, S.W., R. Kunanuvatchaidach & I.D. Godwin, 1995. Somaclonal variation in rice-drought tolerance and other agronomic characters. Aust J Bot 43: 201–209.Google Scholar
  2. Ahloowalia, B.S., 1975. Regeneration of ryegrass plants in tissue culture. Crop Sci 15: 449–452.CrossRefGoogle Scholar
  3. Ahloowalia, B.S., 1976. Chromosomal changes in parasexually produced ryegrass. In: K. Jones & P Brandham (Eds.), Current Chromosome Research, pp. 115–122. North Holland, Amsterdam.Google Scholar
  4. Ahloowalia, B.S., 1983. Spectrum of variation in somaclones of triploid ryegrass. Crop Sci 23: 1141–1147.CrossRefGoogle Scholar
  5. Ahloowalia, B.S., 1986. Limitations to the use of somaclonal variation in crop improvement. In: J. Semal (Eds.), Somaclonal Variation and Crop Improvement, pp. 14–27. Martinus Nijhoff, Boston.Google Scholar
  6. Ahloowalia, B.S., 1985. Transmission of somaclonal variation in wheat. Euphytica 34: 525–537.Google Scholar
  7. Arihara, A., T. Kita, S. Igarashi, M. Goto & Y. Irikura, 1995. White Baron-a non-browning somaclonal variant of Danshakuimo (Irish Cobbler). Amer Potato J 72: 701–705.Google Scholar
  8. Banks, P.M., P.J. Larkin, H.S. Bariana, E.S. Lagudah, R. Appels, P.M. Waterhouse, R.I.S. Brettel, X. Chen, H.J. Xu, Z.Y. Xin, Y.T. Qian, X.M. Zhou, Z.M. Cheng & G.H. Zhou, 1995. The use of cell culture for sub-chromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38: 395–405.PubMedGoogle Scholar
  9. Barakat, M.N. & T.H. Abdel-Latif, 1996. In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica 91: 127–140.Google Scholar
  10. Battistini, C. & P. Rosati, 1991. In vitro evaluation of somaclonal strawberry (Fragaria × ananassa ('Brighton') variants for susceptibility to Phytophthora cactorum. In: A Dale & W.W. Lubby (Eds.), The Strawberry into the 21st Century, pp. 121–123. Timber Press, Portland, Oregon.Google Scholar
  11. Bayliss, M.W., 1980. Chromosomal variation in tissue culture. Intern Rev Cytol Supple 11A: 113–144.Google Scholar
  12. Benzion, G. & R.L. Phillips, 1988. Cytogenetic stability of maize tissue cultures. A cell line pedigree analysis. Genome 30: 318–325.Google Scholar
  13. Bertin, P., J. Bouharmont & J.M. Kinet, 1997. Somaclonal variation and improvement of chilling tolerance in rice-changes in chilling-induced chlorophyll fluorescence. Crop Sci 37: 1727–1735.CrossRefGoogle Scholar
  14. Boscherini G., R. Muleo, G. Montagni, F. Cinelli, M.G. Pellegrini, M. Bernardini & M. Buiatti, 1999. Characterization of salt tolerant plants derived from a Lycopersicon esculentum Mill. somaclone. J Plant Physiol 155: 613–619.Google Scholar
  15. Bouman, H. & G.J. De Klerk, 1996. Somaclonal variation in biotechnology of ornamental plants. In: R. Geneve, J. Preece & S. Merkle (Eds.), Biotechnology of Ornamental Plants, pp. 165–183. CAB International.Google Scholar
  16. Bozorgipour, R. & J.W. Snape, 1997. An assessment of somaclonal variation as a breeding tool for generating herbicide tolerant genotypes in wheat (Triticum aestivum L.). Euphytica 94: 335–340.Google Scholar
  17. Brans, A.J. & M.P. Bridgen, 1989. 'UconnWhite'. A white flowered Torenia fournieri. HortSci 24: 714–715.Google Scholar
  18. Brar, D.S. & S.M. Jain, 1998. Somaclonal variation: mechanism and applications in crop improvement. In: S.M. Jain, D.S. Brar & B.S. Ahloowalia (Eds.), Somaclonal Variation and Induced Mutations in Crop Improvement, pp. 15–37, Kluwer Academic Publishers, Dordrecht.Google Scholar
  19. Bressan, R.A., N.K. Singh, A.K. Handa, A.K. Kononowicz & P.M. Hasegawa, 1985. Stable and unstable tolerance to NaCl in cultured tobacco cells. In: M. Freeling (Ed.), Plant Genetics, pp. 755–769. Liss, New York.Google Scholar
  20. Bressan, R.A., N.K. Singh, A.K. Handa & R. Mount, 1987. Stability of altered genetic expression in cultured plant cells adapted to salt. In: L. Monti & E. Porceddu (Eds.), Drought Resistance in Plants, pp. 41–57. Commission of the European Communities, Brussels.Google Scholar
  21. Brewer, E.P., J.A. Saunders, J.S. Angle, R.L. Chaney & M.S. McIntosh, 1999. Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99: 761–771.Google Scholar
  22. Chaleff, R.S. & T.B. Ray, 1984. Herbicide resistant mutants from tobacco cell cultures. Science 223: 1148–1151.PubMedGoogle Scholar
  23. Chakrabarti, A., I.M. Santha & S.L. Mehta, 1999. Molecular characterisation of low ODAP somaclones of Lathyrus sativus. J Plant Biochem Biotech 8: 25–29.Google Scholar
  24. Creissen, S.S. & A. Karp, 1985. Karyotypic changes in potato plants regenerated from protoplasts. Plant Cell Tiss Org Cult 4: 171–182.Google Scholar
  25. Critinzio, G. & A. Testa, 1999. In vitro evaluation of resistance of potato cultivar to Phytophthora infestans. Potato Res 42: 101–105.Google Scholar
  26. Croughan, S., S. Quisenberry, M. Eichhorn, P. Coyler & P. Brown, 1994. Registration of Brazos-Rs bermudagrass germplasm. Crop Sci 34: 542.CrossRefGoogle Scholar
  27. Davies, P.A., M.A. Pallotta, S.A. Ryan, W.R. Scowcroft & P.J. Larkin, 1986. Somaclonal variation in wheat: Genetic and cytogenetic characterization of alcohol dehydrogenase 1 mutants. Theor Appl Genet 72: 644–653.Google Scholar
  28. DeVerno, L.L., Y.S. Park, J.M. Bonga & J.D. Barrett, 1999. Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss.]. Plant Cell Repts 18: 948–953.Google Scholar
  29. Diawara, M.M., J.T. Trumble, M.L. Lacy, K.K. White & W.G. Carson, 1996. Potential of somaclonal celeries for use in integrated pest management. J Economic Entomology 89: 218–223.Google Scholar
  30. Dörffling, K., H. Dörffling & G. Lesselich, 1993. In vitro selection and regeneration of hydroxyproline-resistant lines of winter wheat with increased proline content and increased frost tolerance. J Plant Physiol 142: 222–225.Google Scholar
  31. Dornelles, A.L.C., F.I.F. Decarvalho, L.C. Federizzi, M.J.C.D. Sereno, C.L. Handel & A. Mittelmann, 1997. Somaclonal variation in aluminium toleance and gibberellic acid sensibility in wheat. Pesquisa Agro Brasileira 32: 193–200.Google Scholar
  32. Dugdale, L.J., H.A. Collin, S. Issac & J.J.B. Gill, 1993. Leaf blight resistance in carrot somaclones. Acta Hort 336: 399–404.Google Scholar
  33. Duncan, R.R., 1997. Tissue culture-induced variation and crop improvement. Adv Agron 58: 201–240CrossRefGoogle Scholar
  34. Engelborghs, I., R. Swennen & S. van Campenhout, 1999. The potential of AFLP to detect genetic differences and somaclonal variants in Musa sp. Info Musa: 7: 2–6.Google Scholar
  35. Escorial, M.C., H. Sixto, J.M. Garciabaudin & M.C. Chueca, 1996. In vitro culture selection increases glyphosate tolerance in barley. Plant Cell Tiss Org Cult 46: 179–186.Google Scholar
  36. Evans, D.A., 1989. Somaclonal variation-genetic basis and breeding applications. Trends in Genetics 5: 346–50.Google Scholar
  37. Evans, D.A. & W.R. Sharp, 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science 221: 949–951.PubMedGoogle Scholar
  38. Evans, D.A., W.R. Sharp & A.P. Medina-Filho, 1984. Somaclonal variation and gametoclonal variation. Amer J Bot 71: 759–774.Google Scholar
  39. Fourre, J.L., P. Berger, L. Niquet & P. Andre, 1997. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94: 159–169.Google Scholar
  40. Gaj, M.D., G. Czaja & M. Nawrot, 1999. Selection of valineresistance in callus culture of Arabidopsis thaliana (L.) Heynh. derived from leaf explants. Acta Soc Bot Poloniae 68: 211–215.Google Scholar
  41. Gao, M.W., X.Y. Cheng & Z.Q. Liang, 1991. Generating pattern and characterestics of wheat somaclonal variation in the first generation. In: Y. Chen et al. (Eds.), Plant Somaclonal Variation and Breeding, pp. 50–59. Jiangsu Sci and Tech Pub House.Google Scholar
  42. Gavazzi, G., C. Tonelli, G. Todesco, E. Arreghini, F. Raffaldi, F. Vecchio, G. Barbuzzi, M.G. Biasini & F. Sala, 1987. Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum). Theor Appl Genet 74: 733–738.Google Scholar
  43. Goral, T. & E. Arseniuk, 1997. Somaclonal variation in winter triticale for resistance to Fusarium head blight. Cereal Res Commun 25: 741–742.Google Scholar
  44. Griesbach, R.J., 1989. Selection of a dwarf Hemerocallis through tissue culture. HortSci 24: 1027–1028.Google Scholar
  45. Groose, R.W. & E.T. Bingham, 1986. An unstable anthocyanin mutation recovered from tissue culture of alflafa. 1. High frequency of reversion upon reculture. 2. Stable non revertants derived from reculture. Plant Cell Rep 5: 104–110.Google Scholar
  46. Gu, M.G., Y.Z. Zheng, S.J. He & L.H. Xiao, 1991. Cytogenetic study of regenerated plants and their progenies from maize tissue culture. In: Y. Chen, Y. et al. (Eds.), Plant Somaclonal Variation and Breeding, pp. 166–175. Jiangsu Sci and Tech. Pub. House.Google Scholar
  47. Gupta, P.K., 1998. Chromosomal basis of somaclonal variation in plants. In: S.M. Jain, D.S. Brar & B.S. Ahloowalia (Eds.), Somaclonal Variation and Induced Mutations in Crop Improvement, pp. 149–168. Kluwer Academic Publishers, Dordrecht.Google Scholar
  48. Hall, H.K., R.M. Skirvin & W.F. Braam, 1986. Germplasm release of ‘Lincoln logan’ a tissue culture-derived genetic thornless ‘loganberry’. Fruit Var J 40: 134–135.Google Scholar
  49. Hammerschlag, F.A., 2000. Resistant responses of peach somaclone 122–1 to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae. HortSci 35: 141–143.Google Scholar
  50. Hashmi, G., R. Huettel, R. Meyer, L. Krusberg & F. Hammerschlag, 1997. RAPD analysis of somaclonal variants derived from embryo callus cultures of peach. Theor Appl Genet 16: 624–627.Google Scholar
  51. Heath-Pagliuso, S. & L. Rappaport, 1990. Somaclonal variant UC-T3 - The expression of Fusarium wilt resistance in progeny arrays of celery, Apium-Graveolens L. Theor Appl Genet 390–394.Google Scholar
  52. Heath-Pagliuso, S., J. Pullman & L. Rappaport, 1988. Somaclonal variation in celery: screening for resistance to Fusarium oxysporum f.sp. apii. Theor Appl Genet 75: 446–451.Google Scholar
  53. Heinz D.J. & G.W.P. Mee, 1969. Plant differentiation from callus tissue of Saccharum species. Crop Sci 9: 346–348.CrossRefGoogle Scholar
  54. Heinz D.J., G.W.P. Mee & L.G. Nickell, 1969. Chromosome number of some Saccharum species hybrids and their cell suspension cultures. Amer J Bot 56: 450–456.Google Scholar
  55. Heinze, D.J. & G.W.P. Mee, 1971. Morphologic, cytogenetic and enzymatic variation in Saccharum species hybrid clones derived from callus culture. Amer J Bot 58: 257–262.Google Scholar
  56. Heinze, B. & J. Schmidt, 1995. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85: 341–345.Google Scholar
  57. Henry, R.J., 1998. Molecular and biochemical characterization of somaclonal variation. In: S.M. Jain, D.S. Brar & B.S. Ahloowalia (Eds.), Somaclonal Variation and Induced Mutations for Crop Improvement, pp. 487–501. Kluwer Academic Publishers, Dordrecht, Great Britain.Google Scholar
  58. Heszky, L.E. & E. Kiss, 1992. 'Dama', the first plant variety of biotechnology origin in Hungary, registered in 1992. Hungarian Agricultural Research 1: 30–32.Google Scholar
  59. Hirochika, H., K. Sugimoto, Y. Otsuki, H. Tsugawa & M. Kanda, 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788.PubMedGoogle Scholar
  60. Hohmann, U., K. Badaeva, W. Busch, B. Friebe & B.S. Gill, 1996. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39: 336–347.PubMedGoogle Scholar
  61. Hwang, S.C., 1990. Somaclonal resistance in Cavendish banana to Fusarium wilt. In: R.C. Ploetz (Ed.), Fusarium Wilt of Banana, pp. 121–125, APS Press, St. Paul, Minnesota, USA.Google Scholar
  62. Infante, R., S. Gonelli, P. Rosatti & M. Mazzara, 1996. Longterm cell suspension culture and regeneration of the single-leafed strawberry Fragaria vesca monophylla. J Sci Food Agric 72: 196–200.Google Scholar
  63. Ishii, K., R. Thakur & S.M. Jain, 1999. Somatic embryogenesis and evaluation of variability in somatic seedlings of in Quercus RAPD markers. In: S.M. Jain, P.K. Gupta & R.J. Newton (Eds.), Somatic embryogenesis in woody plants, Vol 4. pp. 403–414.Google Scholar
  64. Israeli, Y., O. Reuveni & E. Lahav, 1991. Qualitative aspects of somaclonal variations in banana propagated by in vitro techniques. Sci Hort 48: 71–88.Google Scholar
  65. Jain, R.K., S. Jain, H.S. Nainawatee & J.B. Chowdhury, 1990. Salttolerance in Brassica juncea L. 1. In vitro selection, agronomic evaluation and genetic stability. Euphytica 48: 141–152.Google Scholar
  66. Jain, S.M., 1997a. Somaclonal variation and mutagenesis for crop improvement. Maat-alouden tutkimuskeskuksen, Sirkka Immonen (Ed.), Vol. 18, pp. 122–132.Google Scholar
  67. Jain, S.M., 1997b. Creation of variability by mutation and tissue culture in improving plants. Acta Hort 447: 69–78.Google Scholar
  68. Jain, S.M., 1998. Plant biotechnology and mutagenesis for sustainable crop improvement. In: R.K. Behl, D.K. Singh & G.P. Lodhi (Eds.), Crop Improvement for Stress Tolerance, pp. 218–232, CCSHAU, Hissar & MMB, New Delhi, India.Google Scholar
  69. Jain, S.M., 2000. Mechanisms of spontaneous and induced mutations in plants. Radiation Res Vol. 2. Cong. Proc., pp. 255–258.Google Scholar
  70. Jain, S.M., D.S. Brar & B.S. Ahloowalia (Eds.), 1998. Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, UK.Google Scholar
  71. Jan, V.V., C.C. Demacedo, J.M. Kinet & J. Bouharmont, 1997. Selection of Al-resistant plants from a sensitive rice cultivar using somaclonal variation, in vitro and hydroponic cultures. Euphytica 97: 303–310.Google Scholar
  72. Jayashankar, S., R.E. Litz, D.J. Gray & P.A. Moon, 1999. Responses of embryogenic mango cultures and seedling bioassays to a partially purified phytotoxin produced by a mango leaf isolate of Colletotrichum gloeosporioides Penz. In Vitro Cell. & Develop. Biol. (Plant) 35: 475–479.Google Scholar
  73. Kaeppler, S.M., R.L. Phillips & P. Olhoft, 1998. Molecular basis of heritable tissue culture-induced variation in plants. In: S.M. Jain, D.S. Brar & B.S. Ahloowalia (Eds.), Somaclonal Variation and Induced Mutations in Crop Improvement, pp. 467–486. Kluwer Academic Publishers, Dordrecht.Google Scholar
  74. Kaeppler, S.M. & R.L. Phillips, 1993. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Dev Biol 29P: 125–130.Google Scholar
  75. Karp, A., S.H. Steele, S. Parmar, M.G.K. Jones, P.R. Shewry & A. Breiman, 1987. Relative stability among barley plants regenerated from cultured immature embryos. Genome 29: 405–412.Google Scholar
  76. Katiyar, R.K. & V.L. Chopra, 1995. A somaclone of Brassica juncea is processed into a variety and is released for commercial cultivation in India. Cruciferae Newslett 17: 92–93Google Scholar
  77. Keskitalo, M., P. Angers, E. Earle & E. Pehu, 1999. Chemical and genetic characterization of calli derived from somatic hybridization between tansy (Tanacetum vulgare L.) and pyrethrum (Tanacetum cinerariifolium (Trevir.) Schultz-Bip.). Theor Appl Genet 98: 1335–1343.Google Scholar
  78. Kukreja, A.K., O.P. Dhawan, A.K. Mathur, P.S. Ahuja & S. Mandal, 1991. Screening and evaluation of agronomically useful somaclonal variations in Japanese mint (Mentha arvensis L.). Euphytica 53: 183–191.Google Scholar
  79. Kawchuk, L.M., D.R. Lynch, R.R. Martin, G.C. Kozub & B. Ferries, 1997. Field resistance to the potato leafroll luteovirus in transgenic and somaclone potato plants reduces tuber disease symptoms. Can J Plant Pathol 19: 260–266.CrossRefGoogle Scholar
  80. Kirti, P.B., S. Hadi, P.A. Kumar & V.L. Chopra, 1991. Production of sodium-chloride-tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. Theor Appl Genet 83: 233–237.Google Scholar
  81. Lacy, M.L., R. Grumet, K.F. Toth, S.L. Krebs, B.D. Cortright & E. Hudgins, 1996. MSU-SHK5 - A somaclonally derived Fusarium yellow-resistant celery line. HortSci 31: 289–290.Google Scholar
  82. Lambe, P., H.S.N. Mutambel, J.G. Fouche, R. Deltour, J.M. Foidart & T. Gaspar, 1997. DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression. In Vitro Cell Develop Biol-Plant 33: 155–162.Google Scholar
  83. Larkin, P.J. & S.C. Scowcroft, 1981. Somaclonal variation - a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60: 197–214.Google Scholar
  84. Larkin, P.J. & S.C. Scowcroft, 1983. Somaclonal variation and eyespot toxin tolerance in sugarcane. Plant Cell Tiss Org Cult 2: 111–122.Google Scholar
  85. Lee, S.H., Y.G. Shon, C.Y. Kim, H.J. Chun, Y.H. Cheong, Z.H. Kim, Z.R. Choe, Y.J. Choi & M.J. Cho, 1999. Variations in the morphology of rice plants regenerated from protoplasts using different culture procedures. Plant Cell Tiss Org Cult 57: 179–187.Google Scholar
  86. Linacero, R., E. Freitas Alves & A.M. Vazquez, 2000. Hot spots of DNA instability revealed through the study of somaclonal variation. Theor Appl Genet 100: 506–511.Google Scholar
  87. Liu, B., Z.L. Liu & X.W. Li, 1999. Production of a highly asymmetric somatic hybrid between rice and Zizania latifolia (Griseb): evidence for inter-genomic exchange. Theor Appl Genet 98: 1099–1103.Google Scholar
  88. Lee, M. & R.L. Phillips, 1987. Genome rearrangements in maize induced by tissue culture. Genome 29: 122–128.Google Scholar
  89. Levall, M.W. & J.F. Bornman, 1993. Selection in vitro for UVtolerant sugar beet (Beta vulgaris) somaclones. Physiol Plant 88: 37–43.Google Scholar
  90. Mandal, A.B., S.C. Pramanik, B. Chowdhury & A.K. Bandyopadhyay, 1999. Salt-tolerant Pokkali somaclones: performance under normal and saline soils in bay Islands. Field Crops Res 61: 13–21.Google Scholar
  91. Marcotrigiano, M. & L. Jaganathan, 1988. Paulownia tomentosa, cultivar somaclonal Snowstorm. HortSci 226–227.Google Scholar
  92. Martelli, G., I. Greco, B. Mezzetti & P. Rosatti, 1993. Isozymic analysis of somaclonal variation among regenerants from apple root stock leaf tissue. Acta Hort 336: 381–387.Google Scholar
  93. Mathur, A.K., P.S. Ahuja, B. Pandey, A.K. Kukreja & S. Mandal, 1988. Screening and evaluation of somaclonal variations for quantitative and qualitative traits in an aromatic grass, Cymbopogon winterianus Jowitt. Plant Breeding 100: 321–334.Google Scholar
  94. Matsumoto, K., L.A.C. Souza & M.L. Barbosa, 1999a. In vitro selection for Fusarium wilt resistance in banana. 1. Co-cultivation technique to produce culture filtrate of race1 Fusarium oxysporum f.sp. cubense. Fruits 54: 97–102.Google Scholar
  95. Matsumoto, K., M.L. Barbosa, L.A.C. Souza & J.B. Teixeira, 1999b. In vitro selection for Fusarium wilt resistance in banana. II. Resistance to culture filtrate of race 1 Fusarium oxysporum f. sp. cubense. Fruits 54: 151–157.Google Scholar
  96. Matsumoto, K., M.L. Barbosa, L.A.C. Souza & J.B. Teixeira, 1995. Race 1 Fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica 84: 67–71.Google Scholar
  97. Mehta, S., K. Ali & K. Barna, 1994. Somaclonal variation in a food legume-Lathyrus sativus. J. Plant Biochem Biotech 3: 15–20.Google Scholar
  98. Micke, A., 1999. Mutations in plant breeding. In: B.A. Siddiqui & S. Khan (Eds.), Breeding in Crop Plants-Mutations and in vitro Mutation Breeding, pp. 1–19. Kalyani Publishers, Nee Delhi, India.Google Scholar
  99. Moon, D.H., L.M.M. Ottoboni, A.P. Souza, S.T. Sibov, M. Gasper & P. Arruda, 1997. Somaclonal-variation-induced aluminumsensitive mutant from an aluminum-inbred maize tolerant line. Plant Cell Rep 16: 686–691.Google Scholar
  100. Morrison, R.A., W.H.T. Loh, S.K. Green, T.D. Griggs & B.T. McLean, 1989. Tissue culture of tomato and pepper: new tools for plant breeding. Tomato and pepper production in the tropics. Proc. Intern. Symp. on Integrated Management Practices, Tainen, Taiwan. Shanhua, Taiwan, Publisher: AVRDC, pp. 44–50.Google Scholar
  101. Moyer, J.W. & W.W. Collins, 1983. ‘Scarlet’ sweet potato. HortSci 18: 111–112.Google Scholar
  102. Nakajima, K., 1991. Biotechnology for crop improvement and production in Japan. Paper presented at the Regional Expert Consultation on the Role of Biotechnology in Crop Production, FAO Regional Office for Asia and the Pacific, Bangkok, June 18–21, 1991, 21 pp.Google Scholar
  103. Nehra, N.S., R.N. Chibber, K.K. Kartha, R.S.S. Datla, W.L. Crosby & C. Stushnoff, 1990. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system Plant Cell Rep 9: 293–298.Google Scholar
  104. Nielen, S., M. Guzman & F.J. Zapata-Aries, 2000. Studies on Tos17 retrotransposon in rice plants derived from irradiated seeds and in gametoclonal variants. Abs. for ISPMB meeting, June 18–24, 2000, Quebec, Canada.Google Scholar
  105. Nelke, M., J. Nowak, J.M. Wright, N.L. McLean, S. Laberge, Y. Castonguay & L.P. Vezina, 1999. Enhanced expression of a cold-induced gene coding for a glycine-rich protein in regenerative somaclonal variants of red clover (Trifolium pratense L.). Euphytica 105: 211–217.Google Scholar
  106. Ochatt, S.J., P.L. Marconi, S. Radice, P.A. Arnozis & O.H. Caso, 1999. In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants. Plant Cell Tiss & Org Cult 55: 1–8.Google Scholar
  107. O'Conner, B.J., A.J. Robertson & L.V. Gusta, 1991. Differential stress tolerance and cross adaptation in a somaclonal variant of flax. J Plant Physiol 139: 32–36.Google Scholar
  108. Orlando, R., P. Magro & E. Rugini, 1997. Pectic enzymes as a selective pressure tool for in vitro recovery of strawberry plants with fungal disease resistance. Plant Cell Rept 16: 272–276.Google Scholar
  109. Patnaik, J., S. Sahoo & B.K. Debata, 1999. Somaclonal variation in cell suspension culture-derived regenerants of Cymbopogon martinii (Roxb.) Wats var. motia. Plant Breeding 118: 351–354.Google Scholar
  110. Peschke, V.M. & R.L. Phillips, 1992. Genetic implications of somaclonal variation in plants. Adv Genet 30: 41–75.CrossRefGoogle Scholar
  111. Phillips, R.L., S.M. Kaeppler & V.M. Peschke, 1990. Do we understand somaclonal variation? In: H.J.J. Nijkamp, L.H.W. van der Plas & J. van Aartrijk (Eds.), Proceedings of the 7th International Congress on Plant Tissue Cell Culture, pp. 131–141. Kluwer Academic Publishers, Dordrecht.Google Scholar
  112. Phillips, R.L., S.M. Kaeppler & P. Olhoft, 1994. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91: 5222–5226.PubMedGoogle Scholar
  113. Piccioni, E., G. Barcaccia, M. Falcinelli & A. Standardi, 1997. Estimating alfalfa somaclonal variation in axillary branching propagation and indirect somatic embryogenesis by RAPD fingerprinting. Intern J Plant Sci 158: 556–562.Google Scholar
  114. Racchi, M.L., M. Rebecchi, G. Todesco, E. Nielsen & G. Forlani, 1995. Glyphosate tolerance in maize (Zea mays L.). 2. Selection and characterization of a tolerant somaclone. Euphytica 82: 165–173.Google Scholar
  115. Ramgareeb, S., M.P. Watt, C. Marsh & J.A. Cooke, 1999. Assessment of Al3+ availability in callus culture media for screening tolerant genotypes of Cynodon dactylon. Plant Cell Tiss & Org Cult 56: 65–68.Google Scholar
  116. Ramos Leal, R., R.H. Maribona, A. Ruiz, S. Konerva et al., 1996. Somaclonal variation as a source of resistance to eyespot disease of sugarcane. Plant Breed 115: 37–42.Google Scholar
  117. Remotti, P.C., 1998. Somaclonal variation and in vitro selection for crop improvement. In: S.M. Jain, D.S. Brar & B.S. Ahloowalia (Eds.), Somaclonal Variation and Induced Mutations in Crop Improvement, pp. 169–201. Kluwer Academic Publishers, Dordrecht.Google Scholar
  118. Remotti, P.C., H.J.M. Loffler & L. Vanvlotendoting, 1997. Selection of cell-lines and regeneration of plants resistant to fusaric acid from Gladiolus х grandiflorus cv. Peter pears. Euphytica 96: 237–245.Google Scholar
  119. Rietveld, R.C., P.M. Hasegawa & R.A. Bressan, 1991. Somaclonal variation in tuber disc-derived populations of potato. I. Evidence of genetic stability across tuber generations and diverse locations. Theor Appl Genet 82: 430–440.Google Scholar
  120. Rosati, P., B. Menzzetti, M. Anchenari, S. Foscolo, S. Predieri & F. Foscolo, 1990. In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. Acta Hort 280: 409–416.Google Scholar
  121. Roth, R., I. Ebert & J. Schmidt, 1997. Trisomy associated with loss of maturation capacity in a long-term embryogenic cultures of Abies alba. Theor Appl Genet 95: 353–358.Google Scholar
  122. Rout, G.R., S. Samantaray & P. Das, 1999. In vitro selection and biochemical characterization of zinc and manganese adapted callus in Brassica spp. Plant sci 146: 89–100.Google Scholar
  123. Sabir, A., H.J. Newbury, G. Todd, J. Catty & B.V. Ford-Lloyd, 1992. Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro. Theor Appl Genet 84: 113–117.Google Scholar
  124. Sabry, S.R.S., L.T. Smith & G.M. Smith, 1995. Osmoregulation in Spring wheat under drought and salinity stress. J Genet & Breed 49: 55–60.Google Scholar
  125. Samantaray, S., G.R. Rout & P. Das, 1999. In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Sci 143: 201–209.Google Scholar
  126. Saunders, J.W., G. Acquaah, K.A. Renner & W.P. Doley, 1992. Monogenic dominant sulfonylurea resistance in sugarbeet from somatic cell selection. Crop Sci 32: 1357–1360.CrossRefGoogle Scholar
  127. Seliskar, D.M. & J.L. Gallagher, 2000. Exploiting wild population diversity and somaclonal variation in the salt marsh grass Distichlis spicata (Poaceae) for marsh creation and restoration. Amer J Bot 87: 141–146.Google Scholar
  128. Semal, J., 1986. Somaclonal Variation and Crop Improvement, Martin Nijhoff, Boston.Google Scholar
  129. Shahin, E.A. & R. Spivey, 1986. A single dominant gene for Fusarium wilt resistance in protoplast-derived tomato plants. Theor Appl Genet 73: 164–169.Google Scholar
  130. Shenoy V.B. & I.K. Vasil, 1992. Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K Schum). Theor Appl Genet 83: 947–955.Google Scholar
  131. Shepard, J.F., D. Bidney & E. Shahin, 1980. Potato protoplasts in crop improvement. Science 208: 17–24.PubMedGoogle Scholar
  132. Sibov, S.T., M. Gasper, M.J. Silva, L.M.M. Ottoboni, P. Arruda & A.P. Souza, 1999. Two genes control aluminum tolerance in maize: Genetic and molecular mapping analyses. Genome 42: 475–482.Google Scholar
  133. Skirvin, R.M. & J. Janick, 1976. Tissue culture-induced variation in scented Pelargonium spp. J Amer Soc Hort Sci 101: 281–290.Google Scholar
  134. Skirvin, R.M., M. Norton & K.D. McPheeters, 1993. Somaclonal variation: has it proved useful for plant improvement. Acta Hort 336: 333–340.Google Scholar
  135. Sotirova, V., L. Shtereva, N. Zagorska, B. Dimitrov & N. Bogatsevska, 1999. Resistance responses of plants regenerated from tomato anther and somatic tissue cultures to Clavibacter michiganense. Israel J Plant Sci 47: 237–243.Google Scholar
  136. Stephens, P.A., C.D. Nickell & J.M. Widholm, 1991. Agronomic evaluation of tissue culture-derived soybean plants. Theor Appl Genet 82: 633–635.Google Scholar
  137. Stewart, G.R. & J.A. Lee, 1974. The role of chlorine accumulation in halophytes. Planta 20: 279–289.Google Scholar
  138. Sunderland, N., 1977. Nuclear cytology. In: H.E. Street (Ed.), Plant Tissue and Cell Culture, pp. 177–205. Blackwell, Oxford.Google Scholar
  139. Taylor, P.W.J., J.R. Geijskes, H.L. Ko, T.A. Fraser, R.J. Henry & R.G. Birch, 1995. Sensitivity of random amplified polymorphic DNA analysis to detect genetic changes in sugarcane during tissue culture. Theor Appl Genet 90: 1169–1173.Google Scholar
  140. Tian, D. & R.J. Rose, 1999. Asymmetric somatic hybridization between the annual legumes Medicago truncatula and Medicago scutellata. Plant Cell Rept 18: 989–996.Google Scholar
  141. Thakur, R.C., S. Goto, K. Ishii & S.M. Jain, 1999. Monitoring genetic stability in Quercus serrata Thunb. Somatic embryogenesis using RAPD markers. J For Res 4: 157–160.Google Scholar
  142. Valkonen, J.P.T., T. Moritz, K.N. Watanabe & Veli-Matti Rokka, 1999. Dwarf (di)haploid pito mutants obtained from a tetraploid potato cultivar (Solanum tuberosum subsp. tuberosum) via anther culture are defective in gibberellin biosynthesis. Plant Sci 149: 51–57.Google Scholar
  143. Van den Bulk, R.W. & J.J.M. Dons, 1993. Somaclonal variation as a tool for breeding tomato for resistance to bacterial canker. Acta Hort 336: 347–355.Google Scholar
  144. Veilleux, R.E., L.Y. Shen & M.M. Paz, 1995. Analysis of the genetic composition of anther-derived potato by randomly amplified polymorphic DNA and simple sequence repeats. Genome 38: 1153–1162.PubMedGoogle Scholar
  145. Veilleux, R.E. & A.A.T. Johnson, 1998. Somaclonal variation: Molecular analysis, transformation, interaction, and utilization. Plant Breed Rev 16: 229–268.Google Scholar
  146. Wicki, W., M. Messmer, M. Winzeler, P. Stamp & J.E. Schmid, 1999. In vitro screening for resistance against Septoria nodorum. Theor Appl Genet 99: 1273–1280.Google Scholar
  147. Winicov, I., 1991. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Rep 10: 561–564.Google Scholar
  148. Winicov, I., 1996. Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines. Plant Sci 13: 105–111.Google Scholar
  149. Wolff, K., E. Zietkiewicz & H. Hofstra, 1995. Identification of chrysanthemum cultvars and stability of DNA fingerprint patterns. Theor Appl Genet 91: 439–447.Google Scholar
  150. Xie, Q., R. Linscombe, M.C. Rush & F. Jodari-Karimi, 1992. Registration of LSBR-33 and LSBR-5 sheath blight-resistant germplasm lines in rice. Crop Sci 32: 507.CrossRefGoogle Scholar
  151. Xiong, L.Z., C.G. Xu, M.A.S. Maroff & Q.F. Zhang, 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261: 439–446.PubMedGoogle Scholar
  152. Xu, Z. & Z. Chen, 1995. Recent advances of plant tissue culture and biotechnology in China. Plant Tissue Culture & Biotech 1: 147–153.Google Scholar
  153. Xu, Y.S., M. Murto, R. Dunckley, M.G.K. Jones & E. Pehu, 1993. Production of asymmetric hybrids between Solanum tuberosum and irradiated S. brevidens. Theor Appl Genet 85: 729–734.Google Scholar
  154. Yadav, V.K. & S.L. Mehta, 1995. Lathyrus sativus - a future pulse crop free of neurotoxin. Current Sci 68: 288–292.Google Scholar
  155. Zambrano, A.Y., J.R. Demey & V. Gonzalez, 1999. Selection of an Ametryn tolerant sugarcane cellular line. J Agric Univ Puerto Rica 83: 47–54.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • S. Mohan Jain
    • 1
  1. 1.Plant Breeding and Genetics Section, FAO/IAEA DivisionInternational Atomic Energy AgencyViennaAustria

Personalised recommendations