, Volume 116, Issue 1, pp 65–85

Traditional maintenance breeding of landraces: 1. Data by crop

  • A.C. Zeven


Examples of the methods of traditional maintenance breeding of several crops, cited in literature, are presented. It is concluded that, although crops are grown all over the world, only few examples are sufficiently described. Only for maize some reliable data are available. Three explanations for this small number are 1. the farmers are not aware of their knowledge of growing crops (including traditional maintenance breeding), 2. the interviewers and other scientists are not acquainted with this farmer's knowledge, or 3. most farmers do not actually perform traditional maintenance breeding, as they and their ancestors probably have experienced that traditional maintenance breeding does not result in a better crop. They must have thought that seed replacement was a better method to maintain the yielding capacity of their crops.

gardenrace landrace traditional experimentation traditional maintenance breeding traditional seed supply 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.W. & G.B. Martin, 1988. Genetic structure of bean landraces in Malawi. In: P. Gepts (Ed.), Genetic Resources of Phaseolus Beans, pp. 355-374. Kluwer Academic Publ.Google Scholar
  2. Allen, E.J., P.J. O'Brien & D. Firman, 1992. Seed tuber production and management. In: P.M. Harris (Ed.), The Potato Crop. The Scientific Basis for Improvement, pp. 278-326. 2nd ed. London.Google Scholar
  3. Anderson, E., 1947. Field studies of Guatemalan maize. Annals Missouri Botanical Garden 34: 433–467. Cited by Mangelsdorf (1974).CrossRefGoogle Scholar
  4. Anderson, E., 1954. Plants, man & life. University of California Press. Reprint 1967. 251 pp.Google Scholar
  5. Anderson, E. & H. Cutler, 1942. Races of Zea mays: I. Their recognition and classification. Ann Missouri Bot Garden 21: 69–88.CrossRefGoogle Scholar
  6. Annicchiarico, P. & E. Piano, 1997. Effect of selection under cultivation on morphological traits and yields of Ladino white clover landraces. Genetic Resources & Crop Evolution 44: 405–410.CrossRefGoogle Scholar
  7. Anon., 1857. Proefteelt met verschillende soorten van tarwe. Vriend van de landman 21: 111-112. (based on an experiment taken by Lucien Rousseau in France).Google Scholar
  8. Anon., 1989. Interactions for local innovations. IDS-Workshop. In: R. Chambers, A. Pacey & L.A. Thrupp (Eds.), Farmer First. Farmer innovation and agricultural research, pp. 43-51. International Technical Publications. 218 pp.Google Scholar
  9. Awegechew Teshome, L. Fahrig, J.K. Torrana, J.D.H. Lambert, J.T. Arnason & B. Baum, 1999a. Traditional farmers' knowledge of sorghum (Sorghum bicolor [Poaceae]) landrace storability in Ethiopia. Economic Botany 53: 51–78.Google Scholar
  10. Awegechew Teshome, L. Fahrig, J.K. Torrana, J.D.H. Lambert, J.T. Arnason & B. Baum, 1999b. Maintenance of sorghum (Sorghum bicolor, Poaceae) landrace diversity by farmers, selection in Ethiopia. Economic Botany 53: 79–88.Google Scholar
  11. Axelson, V., 1908. [The current state of the seed question in our country and duties of the Seed Association for the progress]. Suomen Kylvösiemenyhdistyksen Julkaisuja 4: 32–41 (transl. by H. Ahokas, 1999).Google Scholar
  12. Beharev, A., G. Golan & A. Levy, 1997. Evaluation and variation in response to infection, with Puccinia striiformis and Puccinia recondita of wheat landraces. Euphytica 94: 287–293.CrossRefGoogle Scholar
  13. Bellon, M.R., 1991. The ethnoecology of maize variety management: a case study from Mexico. Human Ecology 19: 389–418.CrossRefGoogle Scholar
  14. Bennett, E., 1973. Wheats of the Mediterranean Basin. In: O.H. Frankel (Ed.), Survey of Crop Genetic Resources in their Centres of Diversity, pp. 1–8. First report. FAO-IBP, Rome. 164 pp.Google Scholar
  15. Bennett-Lartey, S.O. & R. Akromah, 1996. The role of women in plant genetic resources activities in Ghana. Plant Genetic Resources Newsletter no 106: 43.Google Scholar
  16. Berg, T., 1993. The science of plant breeding-support or alternative to traditional practices? In: de Boef et al., pp. 72-77.Google Scholar
  17. Bernard, R.L., G.A. Juvik, E.E. Hartwig & C.J. Edwards Jr., 1988. Origins and pedigree of Public Soybean Varieties in the United States and Canada. UDSA-ARS Techn. Bull. no 1746. Springfield. 68 pp.Google Scholar
  18. Biebl, E., 1927. Getreidebau und Getreidevarietäten im salzburgischen und steirischen Ennstale, im Paltentale und steirischen Salzkammergut. Fortschritt der Landwirtschaft 2: 179–184.Google Scholar
  19. Bieleman, J. & H.K. Roessingh, 1994. Wie zaait zal oogsten? De ontwikkeling van het rogge-beschot op de noordelijke zandgronden op lange termijn. In: H. Diederiks, J.Th. Lindblad & B. de Vries (Eds.), Het Platteland in een Veranderende Wereld, pp. 167-197. Hilversum. 348 pp.Google Scholar
  20. Bishaw, Z. & S. Kugbei, 1997. Seed supply in the WANA region: status and constraints. In: D.D. Rohrbach, Z. Bishaw & A.J.G. van Gastel (Eds.), Alternalive Strategies for Smallholder Seed Supply, pp. 18-33. Patacheru. 281 pp.Google Scholar
  21. Blum, A., B. Simmena, G. Golan & J. Mayer, 1987. The grain quality of landraces of wheat as compared with modern cultivars. Plant Breeding 99: 226–233.CrossRefGoogle Scholar
  22. Boerendonk, M.J., 1935. Historische studies over de Zeeuwsche landbouw. Den Haag. 376 pp.Google Scholar
  23. Bohrer, V.L., 1994. Maize in Middle America and Southwestern United States agricultural traditions. In: S. Johannessen & C.A. Hastorf (Eds.), Corn and Culture in the Prehistoric New World, pp. 469-512. Westview Press. 623 pp.Google Scholar
  24. Boster, J., 1984. Inferring decision making from preferences and behavior: an analysis of Aguaruna Jivaro manioc selection. Human Ecology 12: 343–358.CrossRefGoogle Scholar
  25. Bradshaw, A.D., 1975. Population structure and the effects of isolation and selection. In: O.H. Frankel & J.G. Hawkes (Eds.), Crop Genetic Resources for Today and Tomorrow, pp. 37-52. Cambridge Intern. Biol. Programme 2. Cambridge.Google Scholar
  26. Bray, F., 1984. Part II. Agriculture, vol. 6. Biology and biological technology. In: J. Needham (Ed.), Science and Civilisation in China. Cambridge. 724 pp.Google Scholar
  27. Brush, S.B., H.H. Carney & Z. Huaman, 1981. Dynamics of Andean potato agriculture. Economic Botany 35: 70–88.Google Scholar
  28. Butterfass, Th., 1987. Cell volume ratios of natural and of induced tetraploid and diploid flowering plants. Cytologia 52: 309–316.Google Scholar
  29. Cleveland, D.A., D. Soleri & S.E. Smith, 1994. Do folk crop varieties have a role in sustainable agriculture? BioScience 44: 740–751.CrossRefGoogle Scholar
  30. Cordes, J.W.H., 1855. De inoogsting en zuivering der voornaamste granen, met betrekking tot den Nederlandschen landbouw. Vriend van den Landman 19: 321–346.Google Scholar
  31. Crehu, G. du, 1957. Le chou fourrager. Etude biologique. Problèmes variétaux. Ann Amélioration Plantes 3: 313–335.Google Scholar
  32. Crissman, C.C. & J.E. Uquillas, 1989. Seed potato systems in Ecuador: a case study. International Potato Center-CIP, Lima. 70 pp.Google Scholar
  33. Cromwell, E., 1990. Seed diffusion mechanisms in small farmer communities. Lessons from Asia, Africa and Latin America. ODI-agricultural administration (Research and Extension) Network. Network Paper 21. 57 pp.Google Scholar
  34. Damania, A.B., 1985. Preliminary evaluation of Triticum aestivum L. from Nepal. Plant Genetic Resources Newsletter no 61: 19-22.Google Scholar
  35. Dangbegnon, C. & J. Brouwers, 1990. Maize farmers, informal R&D. ILEA newsletter, October-1990: 24-25.Google Scholar
  36. DeWet, J.M.J., 1995. Pearl millet Pennisetum glaucum (Gramineae-Paniceae). In: J. Smartt & N.W. Simmonds (Eds.), Evolution of Crop Plants, pp. 156-159. Barlow. 531 pp.Google Scholar
  37. Dennis, J.V., 1987. Farmer management of rice variety diversity in northern Thailand. PhD dissertation, Cornell University. Michigan University Microfilms. Ann Arbor. 367 pp.Google Scholar
  38. Falcinelli, M., L. Russi, V. Negri & F. Veronesi, 1994. Variation within improved cultivars and landraces of lucerne in Central Italy. In: O.A. Rogni, E. Solberg & I. Schjelderup (Eds.), Breeding Fodder Crops for Mechanical Conditions, pp. 81-87. Kluwer Academic Publ. 329 pp.Google Scholar
  39. Frankel, O.H. & M.E. Soulé, 1981. Conservation and evolution. Cambridge. 327 pp.Google Scholar
  40. Freeman, J.D., 1955. Iban agriculture: a report of the shifting cultivation of hill rice by the Iban of Sarawak. London. 148 pp.Google Scholar
  41. Fruwirth C., 1930. Allgemeine Züchtungslehre der landwirtschaftlichen Kulturpflanzen. Berlin. 478 pp.Google Scholar
  42. Galinat, W.C., 1996. Evolutionary diversification in low density isolated gardens. Maize Genetics Cooperation Newsletter no 70: 67-68.Google Scholar
  43. Geddes, A.M.W., 1989. Potato atlas of Pakistan. Islamabad. 79 pp.Google Scholar
  44. Grall, J. & B.R. Levy, 1985. La guerre des semences. Paris. 410 pp.Google Scholar
  45. Hallauer, A.R. & J.P. Miranda, 1988. Quantitative genetics in maize breeding. Iowa State Univ. Press, Ames. 468 pp.Google Scholar
  46. Handy, E.S.C., 1940. The Hawaiian planter, Vol. 1. His plants, methods and areas of cultivation. Bernice P. Bishop Museum bull. 166. Honolulu, 227 pp.Google Scholar
  47. He, W., 1998. Agronomic and ecological studies on the potato (Solanum tuberosum L.) in Southwest China, Seed and crop management. Wageningen. 133 pp.Google Scholar
  48. Hepper, F.N., 1967. An ancient expedition to transplant living trees; exotic gardening by an Egyptian queen. J Roy Hort Soc 42: 435–438.Google Scholar
  49. Hertum, J. van, 1860. Landbouwkundige beschrijving van een gedeelte der provincie Zeeland. Tijdschrift van Nijverheid: overdruk. 12 pp.Google Scholar
  50. Hillman, G., 1981. Recontructing crop husbandry practices from charred remains of crops. In: R. Mercer (Ed.), Farming Practice in British Prehistory, pp. 123-162. Edinburgh, 245 pp.Google Scholar
  51. Jensen, N.F, 1994. Historical perspectives on plant breeding methodology. In: K.J. Frey (Ed.), Historical Perspectives in Plant Science, pp. 179–194. Iowa State Univ. Press, Ames. 205 pp.Google Scholar
  52. Johannessen, C.L., 1982. Domestication process of maize continues in Guatemala. Economic Botany 36: 84–99.Google Scholar
  53. Johannessen, C.L., M.R. Wilson & W.A. Davenport, 1970. The domestication of maize: process or event? Geogr Review 10: 393–413.CrossRefGoogle Scholar
  54. Jönsson, R., N.-O. Bertholdson, G. Engqvist & I. Ahman, 1994.(Plant characters of importance in ecological farming). Sveriges Utsadesfor. Tidskrift 104: 137–148.Google Scholar
  55. Julier, B., 1996. Traditional seed maintenance and origins of the French lucerne landraces. Euphytica 92: 353–357.CrossRefGoogle Scholar
  56. Laredo, C. & J. Pernès, 1988. Models for pearl millet domestication as an example of cereal domestication. I. A one locus asymmetrical model. J Theor Biol 131: 289–305.CrossRefGoogle Scholar
  57. Lathrap, D.W., 1977. Our father the cayman, our mother the gourd: spinden revisited, or a unitary model for the emergence of agriculture in the New World. In: Ch.A. Reed (Ed.), Origins of Agriculture, pp. 713-753. The Hague/Paris, 1013 pp.Google Scholar
  58. Leemans, J.A., 1964. Rootstocks for roses. Boskoop. 72 pp.Google Scholar
  59. Lettinga, J., 1977. De zaadteelt van Inlandse Witte Klaver in NW Friesland? Manuscript. 6 pp.Google Scholar
  60. Lightfoot, C., 1987. Indigenous research and On-farm trials. Agric Admin Extension 24: 79–89.CrossRefGoogle Scholar
  61. Lindemans, P., 1952. Geschiedenis van de landbouw in België. Antwerpen, 541 pp.Google Scholar
  62. Linnemann, A.R. & J.S. Siemonsma, 1989. Variety choice and seed supply by smallholders. ILIEA newsletter, December-1989: 22-23.Google Scholar
  63. Louette, D., 1995. Seed exchange among farmers and gene flow amongmaize varieties in traditional agricultural systems. In: P.A. Serratos, M.C. Willcox & F. Catillo (Eds.), Proceedings of a Forum Gene Flow among Maize Landraces, Improved Maize Varieties and Teosinte: Implications for Transgenic Maize, pp. 55-66. Mexico, 122 pp.Google Scholar
  64. Mangelsdorf, P.C., 1974. Corn-its origin, evolution and improvement. The Bellknap Press. 262 pp.Google Scholar
  65. Margelé, E., Y. Henry, J. Hu & C.F. Quiros, 1995. Determination of genetic variability by RAPD markers in cauliflower, cabbage and kale local cultivars from France. Genetic Resources and Crop Evolution 42: 281–289.CrossRefGoogle Scholar
  66. Maurya, D.M., 1989. The innovation approved of Indian farmers. In: R. Chambers, A. Pacey & L.A. Thrupp (Eds.), Farmer First. Farmer Innovation and Agricultural Research, pp. 9-14. International Technical Publications, 218 pp.Google Scholar
  67. Meeuwse, K., 1996. Opkomst en ondergang van de Ruslui. Utrecht, 198 pp.Google Scholar
  68. Melaku Worede & Hailu Mekbib, 1993. Linkage genetic resources conservation to farmers in Ethiopia. In: de Boef et al. (Eds.), pp. 78-84.Google Scholar
  69. Muliokela, S.W., 1997. Seed supply constraints in Southern and Eastern Africa. In: D.D. Rohrbach, Z. Bishaw & A.J.G. van Gastel (Eds.), Alternative Strategies for Smallholder Seed Supply, pp. 11-17. Patacheru, 281 pp.Google Scholar
  70. Nüesch, D., 1976. Untersuchungen und Beobachtungen an Hofsorten des Schweizer Mattenklee. Schweiz Landwirt Forschung 15: 401–410.Google Scholar
  71. Orting, B, W.J. Grüneberg & M. Sorensen, 1996. Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) in Bolivia. Genetic Resources and Crop Evolution 43: 435–446.Google Scholar
  72. Ouendebo, B., G.E. Jeta, W.W. Hanna & A.K. Kumar, 1995. Diversity among African pearl millet landrace populations. Crop Science 35: 919–924.CrossRefGoogle Scholar
  73. Pecetti, L. & A.B. Damiana, 1996. Geographic variation in tetraploid wheat (Triticum turgidum ssp. turgidum convar. durum) landraces from two provinces in Ethiopia. Genetic Resources and crop Evolution 43: 395–407.Google Scholar
  74. Pickergill, B., 1986. Evolution of hierarchical variation patterns under domestication and their taxonomic treatment. In: B.T. Styles (Ed.), Infraspecific classification of wild and cultivated plants, pp. 191-209. Systematics Association, Special Volume no 29. Oxford.Google Scholar
  75. Pieters, A.J. & E.A. Hollowel, 1937. Clover improvement. Yearbook of Agriculture 1937: 1190-1214. Cited by Taylor & Quesenberry, 1996.Google Scholar
  76. Plot, R., 1677. The natural history of Oxfordshire. Oxford. Cited by Allen (1992).Google Scholar
  77. Powell, A.A., M. de A. Oliveira & S. Matthews, 1986. Seed vigour in cultivars of dwarf bean (Phaseolus vulgaris) in relation to the colour of the testa. J Agric Sci, Cambridge 106: 419–425.CrossRefGoogle Scholar
  78. Richards, P., 1985. Indigenous agricultural revolution. London, 192 pp.Google Scholar
  79. Richards, P., 1986. Coping with hunger. Hazard and experiment in an African rice-farming system. London, 176 pp.Google Scholar
  80. Rios-Labrada, H., Y. Perera-Ibarra & A. Fernandeze-Almirall, 1998. Effectiveness of the informal seed sector for increasing yield in pumpkins developed under low input conditions. Report Cucurbit Genetics Cooperative no 21: 62. CAD no 981613437.Google Scholar
  81. Roessingh, H.K. & A.H.G. Schaars, 1996. De Gelderse landbouw beschreven omstreeks 1825. Wageningen, 525 pp.Google Scholar
  82. Salazar, R., 1992. MASIPAG: alternative community rice-breeding in the Philippines. Appropriate Technology 18(4): 20–21.Google Scholar
  83. Schachl, R., 1981. Cereal landraces from Austria and their utilization in plant breeding. Kulturpflanze 29: 99–110.CrossRefGoogle Scholar
  84. Sexton, P.J., J.W. White & K.J. Booth, 1994. Yield-determing processes in relation to cultivar seed size of common bean. Crop Science 34: 84–91.CrossRefGoogle Scholar
  85. Shashirekha M.N. & P. Narasimham, 1989. Pre-planting treatment of seed potato tuber pieces to break dormancy, control tuber piece decay and improve yield. Exptl Agriculture 25: 27–33. Cited by He (1998).CrossRefGoogle Scholar
  86. Siemonsma J.S. & A.R. Linnemann, 1988. Seed supple and variety choice in low-input agriculture: a case study of soybean in Pasuruan, East Java, Indonesia. In T. Groosman (Ed.), pp. 67-78.Google Scholar
  87. Soleri, D. & D.A. Cleveland, 1993. Hopi crop diversity and change. Journal of Ethnobiology 13: 203–231.Google Scholar
  88. Spagnoletti Zeule, P.L., C. de Pace & E. Porceddu, 1984. Variation in durum wheat populations from three geographical origins. I. Material and spike characters. Euphytica 33: 563–575.CrossRefGoogle Scholar
  89. Squire, F.A., 1942. Notes on Mende rice varieties. Sierra Leone Agricultural Notes 10, cited by P. Richards (1985).Google Scholar
  90. Taylor, N.L. & K.H. Quesenberry, 1996. Red clover science. Kluwer Academic Publ., 226 pp.Google Scholar
  91. Temple, S.R. & F.J. Morales, 1986. Linkage of dominant hypersensitive resistance to bean common mosaic virus to seed color in Phaseolus vulgaris L. Euphytica 35: 331–333.CrossRefGoogle Scholar
  92. Thurston, H.D., 1994. Assessing indigenous and traditional knowledge in farming systems. In: R.S. Zeigler, S.A. Leong & P.S. Teng (Eds.), Rice Blast Diseases, pp. 541-558. IRRI/CAP International, 646 pp.Google Scholar
  93. Verhey, F.L., 1945. Het Didamse smeelensnijdersbedrijf. Landbouwkundig Tijdschrift 56/57: 470–480.Google Scholar
  94. Voss, J., 1992. Conserving and increasing on-farm genetic diversity: farmers management of varietal bean mixtures in Central Africa.Google Scholar
  95. In: J.L. Moock & R.E. Rhodes (Eds.), Diversity, Farmer Knowledge and Sustainability, pp. 34-51. Cornell University Press, 278 pp.Google Scholar
  96. de Vries, D.P., 1993. The vigour of glasshouse roses: scionrootstock relationships. Effect of phenotypic and genotypic variation. Wageningen, 169 pp.Google Scholar
  97. de Vries, D.P. & L.A.M. Dubois, 1987. Variation for plant characters and for performance of softwood cuttings of Rosa canina ‘Inermis’ seedlings. Euphytica 36: 407–412.CrossRefGoogle Scholar
  98. de Vries, D.P. & L.A.M. Dubois, 1988. Shoot and root characters of one-season-old Rosa canina 'Inermis' rootstock seedlings in relation to the root collar diameter. Gartenbauwissenschaft 53(1): 30–33.Google Scholar
  99. Werneck, H.L., 1935. Die naturgesetzlichen Grundlagen der Land und Forstwirtschaft in Oberösterreich. Jahrbuch des oberösterreichische Vereines: 270-288. Cited by Schachl (1981).Google Scholar
  100. Westgate, J.M. & F.H. Hillman, 1991. Red clover. USDA Farmers Bull 1475: 1–22. Cited by Taylor & Quisenberry, 1996.Google Scholar
  101. White, J.W. & A. González, 1990. Characterization of the negative association between seed yield and seed size among genotypes of common bean. Field Crop Research 23: 159–175.CrossRefGoogle Scholar
  102. White, J.W., S.P. Singh, C. Pino, M.J. Rios B. & I. Buddenhagen, 1992. Effects of seed size and photoperiod response on crop growth and yield of common bean. Field Crop Research 28: 295–307.CrossRefGoogle Scholar
  103. White, K.D., 1970. Roman farming. London, 536 pp.Google Scholar
  104. Wilkes, G., 1995. The ethnobotany of artificial selection in seed plant domestication. In: R.E. Schulte & S. Von Reis (Eds.), Ethnobotany. Evolution of a Discipline, pp. 203-208. Chapman & Hall, 414 pp.Google Scholar
  105. Yamaguchi, H. & M. Okamoto, 1997. Traditional seed production in landraces of daikon (Raphanus sativus) in Kyushu, Japan, Euphytica 95: 141–147.CrossRefGoogle Scholar
  106. Yen, D.E., 1963. Sweet-potato variation and its relation to human migration in the Pacific. In: J. Barrau (Ed.), Plants and the Migrations of Pacific Peoples, pp. 93–117. Bishop Museum Press, Honolulu. 136 pp.Google Scholar
  107. Zemeda Asfaw, 1988. Variation in the morphology of the spike within Ethiopian barley, Hordeum vulgare L. (Poaceae). Acta Agric Scand 38:277–288.CrossRefGoogle Scholar
  108. Zemede Asfaw, 1990. An ethnobotanical study of barley in the Central Highlands of Ethiopia. Biol Zentr Blatt 109: 51–62.Google Scholar
  109. Zeven, A.C., 1970. MartinusWillem Beyerinck, a hybridizer of Triticum and Hordeum species at the end of the 19th century and his investigations into the origin of wheat. Euphytica 19: 263–275.CrossRefGoogle Scholar
  110. Zeven, A.C., 1979a. Verslag van een bezoek aan een 6-tal wetenschappelijke instellingen in de VS, 13 mei-2 juni 1979. Wageningen. Typescript. 40 pp. The figures are based on information received from Sprague.Google Scholar
  111. Zeven, A.C., 1979b. Collecting genetic resources in highly industrialized Europe, especially the Netherlands. In: A.C. Zeven & A.M. van Harten (Eds.), Broadening the Genetic Base of Crops, pp. 49-58. Wageningen, 347 pp.Google Scholar
  112. Zeven, A.C., 1986. Landrace groups of bread wheat (Triticum aestivum L. em. Thell.). Acta Horticulturae 182: 365–376.Google Scholar
  113. Zeven, A.C., 1990. Landraces and improved cultivars of bread wheat and other wheat types grown in the Netherlands up to 1944. Wageningen Agricultural University Papers 90.2. Wageningen, 103 pp.Google Scholar
  114. Zeven, A.C., 1991. Four hundred years of cultivation of Dutch white clover landraces. Euphytica 54: 93–99.CrossRefGoogle Scholar
  115. Zeven, A.C., 1997. The introduction of the common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in the Netherlands in 1946. Euphytica 94: 319–328.CrossRefGoogle Scholar
  116. Zeven, A.C., 1998. Landraces: a review of definitions and classifications. Euphytica 104: 127–139.CrossRefGoogle Scholar
  117. Zeven, A.C., 1999. The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 110: 181–191.CrossRefGoogle Scholar
  118. Zeven, A.C., in prep. Traditional maintenance breeding of landraces: 2.Google Scholar
  119. Zeven, A.C., M.S. Ramanna, M. Boeder, Z. Sawor & J. Waninge, 1989. Diploids and natural autotetraploids in the predominantly vegetatively propagated Brassica oleracea L. var. ramosa DC and their cytology. Euphytica 41: 59–64.CrossRefGoogle Scholar
  120. Zeven, A.C. & J. Waninge, 1989. The presence of three groups of Scalavatis and other hexaploid bread wheat plants contaminating durum wheat field in Cyprus. Euphytica 43: 117–124.CrossRefGoogle Scholar
  121. Zeven, A.C., J.Waninge, Th. van Hintum & S.P. Singh, 1999. Phenotypic variation in a core collection of common bean (Phaseolus vulgaris) in the Netherlands. Euphytica 109: 93–106.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A.C. Zeven
    • 1
  1. 1.Laboratory of Plant Breeding, Department of Plant SciencesWageningen UniversityWageningenThe Netherlands

Personalised recommendations