, Volume 116, Issue 2, pp 151–159 | Cite as

Identifying lettuce species (Lactuca subsect. Lactuca, Asteraceae): A practical application of flow cytometry

  • Wim J.M. Koopman


The wild lettuce species L. serriola, L. saligna, and L. virosa are important genitors in lettuce (L. sativa) breeding. Identifying these wild species can be problematic because in some cases they look very similar. Flow cytometry was tested for its reliability and general applicability as a tool to distinguish them. Three series of tests were conducted: (1) Tests with three accessions of L. sativa and one accession of each of the wild species, repeated three times throughout the year. In each repeat, the mean relative DNA amount of L. serriola was significantly higher than that of L. saligna, but significantly lower than that of L. virosa. The mean relative DNA amount of L. sativa did not differ from that of L. serriola.(2) Tests with each wild species represented by 10 accessions. Significant differences between the accessions within each species demonstrated the presence of intraspecific variation. Notwithstanding this intraspecific variation, the relative DNA amounts of all accessions of L. serriola were significantly higher than that of all L. saligna accessions, and significantly lower than that of all L. virosa accessions. Therefore, all accessions could be assigned to the appropriate species on the basis of their DNA amounts. (3) Tests with single plants from 10 accessions of each of the wild species. These test revealed that individual plants of L. serriola, L. saligna, and L. virosa can be reliably identified with flow cytometry, when aL. serriola sample of established identity is used as internal reference.

Asteraceae DNA content flowcytometry genitors Lactuca lettuce breeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter 9: 208-218.CrossRefGoogle Scholar
  2. Bennett, M.D., 1985. Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In: Freeling, M. (Ed.), Plant genetics: proceedings of the third annual ARCO Plant Cell Research Institute-UCLA symposium on plant biology held in Keystone, Colorado April 13-19 1985, pp. 283-302. Alan R. Liss, Inc., New York.Google Scholar
  3. Bennett, M.D. & J.B. Smith, 1976. Nuclear DNA amounts in angiosperms. Philos Trans, Ser B 274: 227-274.Google Scholar
  4. Bennett, M.D., J.B. Smith & J.S. Heslop-Harrison, 1982. Nuclear DNA amounts in angiosperms. Proc Roy Soc London, Ser B, Biol Sci 216: 179-199.CrossRefGoogle Scholar
  5. Bennett, M.D. & J.B. Smith, 1991. Nuclear DNA amounts in angiosperms. Philos Trans, Ser B 334: 309-345.Google Scholar
  6. Bennett, M.D. & I.J. Leitch, 1995. Nuclear DNA amounts in angiosperms. Ann Bot 76: 113-176.CrossRefGoogle Scholar
  7. Bennett, M.D. & I.J. Leitch, 1997. Nuclear DNA amounts in angiosperms-583 new estimates. Ann Bot 80: 169-196.CrossRefGoogle Scholar
  8. Cavallini, A. & L. Natali, 1991. Intraspecific variation of nuclear DNA content in plant species. Caryologia 44: 93-107.Google Scholar
  9. De Laat, A.M.M. & J. Blaas, 1984. Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67: 463-467.Google Scholar
  10. Dhillon, S.S., 1988. DNA analysis during growth and development. In: Hanover, J.W. & D.E. Keithley (Eds.), Genetic Manipulation of Woody Plants, pp. 265-274. Plenum, New York.Google Scholar
  11. Flavell, R.B., 1986. Repetitive DNA and chromosome evolution in plants. Phil Trans R Soc Lond. B: 227-242.Google Scholar
  12. Flavell, R.B., M.D. Bennett, J.B. Smith & D.B. Smith, 1974. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12: 257-269.PubMedCrossRefGoogle Scholar
  13. Frietema de Vries, F.T., R. Van der Meijden & W.A. Brandenburg, 1994. Botanical Files on Lettuce (Lactuca sativa). Gorteria suppl. 2.Google Scholar
  14. Frietema de Vries, F.T., 1996. Cultivated plants and the wild flora. PhD Thesis, Rijksherbarium/Hortus Botanicus, Leiden, The Netherlands.Google Scholar
  15. Hammatt, N., N.W. Blackhall & M.R. Davey, 1991. Variation in the DNA content of Glycine species. J Exp Bot 42: 659-665.Google Scholar
  16. Huff, D.R. & A.J. Palazzo, 1998. Fine fescue species determination by laser flow cytometry. Crop Sci 38: 445-450.CrossRefGoogle Scholar
  17. Johnston, J.S., A. Jensen, D.G. Czeschin, Jr. & H.J. Price, 1996. Environmentally induced nuclear 2C DNA content instability in Helianthus annuus (Asteraceae). Amer J Bot 83: 1113-1120.CrossRefGoogle Scholar
  18. Kapuscinski, J. & W. Szer, 1979. Interactions of 40, 6-diamidine-2-phenylindole with synthetic polynucleotides. Nucl Acids Res 6: 3519-3534.PubMedGoogle Scholar
  19. Kesseli, R.V. & R.W. Michelmore, 1986. Genetic variation and phylogenies detected from isozyme markers in species of Lactuca. J Heredity 77: 324-331.Google Scholar
  20. Koopman, W.J.M., 1999. Plant systematics as a useful tool for plant breeders: examples from lettuce. In: Lebeda, A. & E. Kristkova (Eds.), Eucarpia Leafy Vegetables '99. Proceedings of the Eucarpia meeting on leafy vegetables genetics and breeding, Olomouc, Czech Republic, 8-11 June, 1999, pp. 95-105. Palacky University, Olomouc.Google Scholar
  21. Koopman, W.J.M. & J.H. De Jong, 1996. A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subsect. Lactuca, Compositae). Acta Bot Neerl 45: 211-222.Google Scholar
  22. Labani, R.M. & T.T. Elkington, 1987. Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59: 119-128.Google Scholar
  23. Manzini, G., M.L. Barcellona, M. Avitabile & F. Quadrifoglio, 1983. Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids. Nucl Acids Res 11: 8861-8876.PubMedGoogle Scholar
  24. McGuire, P.E., E.J. Ryder, R.W. Michelmore, R.L. Clark, R. Antle, G. Emery, R.N. Hannan, R.V. Kesseli, E.A. Kurtz, O. Ochoa, V.E. Rubatzky & W. Waycott, 1993. Genetic Resources of Lettuce and Lactuca Species in California. An Assessment of the USDA and UC Collections and Recommendations for Long-term Security. Report No. 12, Genetic Resources Conservation Program, Division of Agriculture and Natural Resources, University of California, Davis, California.Google Scholar
  25. Michaelson, M.J., H.J. Price, J.R. Ellison & J.H. Johnston, 1991. Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry. Amer J Bot 78: 183-188.CrossRefGoogle Scholar
  26. Nandini, A.V. & B.G. Murray F.L.S., 1997. Intra-and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Lin Soc 125: 359-366.CrossRefGoogle Scholar
  27. Price, H.J. & K. Bachmann, 1975. DNA content and evolution in the Microseridinae. Amer J Bot 62: 262-267.CrossRefGoogle Scholar
  28. Price, H.J. & J.S. Johnston, 1996. Influence of light on DNA content of Helianthus annuus Linnaeus. Proc Natl Acad Sci USA. 93: 11264-11267.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Wim J.M. Koopman
    • 1
  1. 1.Plant TaxonomyWageningen UniversityWageningenThe Netherlands

Personalised recommendations