, Volume 108, Issue 1, pp 1–7

Conservation of Gene Order Amongst Cell Wall and Cell Division Genes In Eubacteria, and Ribosomal Genes in Eubacteria and Eukaryotic Organelles

  • Yevgeny A. Nikolaichik
  • William D. Donachie


Comparison of genome sequences from Eubacteria and Eukaryotic organelles shows that the order of genes in gene clusters encoding certain highly conserved cell division proteins and ribosomal proteins is itself highly conserved. Experiments with a cluster of cell division and related genes of E. colihave shown that this gene order is not essential for function. Comparisons between genomes also show that no pair of genes are necessarily adjacent in all genomes. The reason for the extreme conservation of order is therefore unknown, although one possible explanation might be the lateral exchange of tightly-linked groups of genes coding for co-adapted sets of proteins.

ancestral-gene-order conservation-of-order lateral-transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addinall, S.G., C. Cao & J. Lutkenhaus, 1997a. FtsN, a late recruit to the septum in E. coli. Mol. Microbiol. 25: 303–309.Google Scholar
  2. Addinall, S.G., C. Cao & J. Lutkenhaus, 1997b. Temperature shift experiments with an ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated. J. Bacteriol. 179: 4277–4284.Google Scholar
  3. Addinall, S.G. & J. Lutkenhaus, 1996a. FtsA is localized to the septum in an FtsZ–dependent manner. J. Bacteriol. 178: 7167–7172.Google Scholar
  4. Addinall, S.G. & J. Lutkenhaus, 1996b. FtsZ spirals and arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol. Microbiol. 22: 231–237.Google Scholar
  5. Aldea M., T. Garrido, J. Pla & M. Vicente, 1990. Division genes in E. coliare expressed coordinately to cell septum requirements by gearbox promoters. EMBO J. 9: 3787–3794.Google Scholar
  6. Beall, B., M. Lowe & J. Lutkenhaus, 1988. Cloning and characterization of Bacillus subtilishomologs of Escherichia colicell division genes ftsZand ftsA. J. Bacteriol. 170: 4855–4864.Google Scholar
  7. Begg, K.J., A. Takasuga, D.H. Edwards, S.J. Dewar, B.G. Spratt, H. Adachi, T. Ohta, H. Matsuzawa & W.D. Donachie, 1990. The balance between different peptidoglycan precursors determines whether E. colicells will elongate or divide. J. Bacteriol. 172: 6697–6703.Google Scholar
  8. Buddelmeijer, N., M.E.G. Aarsman, A.H.J. Kolk, M. Vicente & N. Nanninga, 1998. Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and non–dividing cells of Escherichia coli. J. Bacteriol. 180: 6107–6116.Google Scholar
  9. Chen, J.C., D.S. Weiss, J.–M. Ghigo & J. Beckwith, 1999. Septal localization of FtsQ, an essential cell division gene in Escherichia coli. J. Bacteriol. 181: 521–530.Google Scholar
  10. Daniel, R.A., S. Drake, C.E. Buchanan, R. Scholle & J.G. Errington, 1994. The Bacillus subtilis spoVDgene encodes a mother–cellspecific penicillin binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209–220.Google Scholar
  11. Fisher, R.A., 1929. The genetical theory of natural selection. Oliver & Boyd, Edinburgh.Google Scholar
  12. Ghigo, J.–M. & J. Beckwith, 2000. Cell division in Escherichia coli: role of FtsL domains in septal localization, function, and oligomerization. J. Bacteriol. 182: 116–129.Google Scholar
  13. Highton, P.J., Y. Chang & R.J. Myers, 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4: 1329–1340.Google Scholar
  14. Lawrence, J.G. & J.R. Roth, 1996. Selfish operons – horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843–1860.Google Scholar
  15. Lutkenhaus, J. & H.C. Wu, 1980. Determination of transcriptional units and gene products from the ftsAregion of E. coli. J. Bacteriol. 143: 1281–1288.Google Scholar
  16. Lutkenhaus, J.F. & W.D. Donachie, 1979. Identification of the ftsAgene product. J. Bacteriol. 137: 1088–1094.Google Scholar
  17. Lutkenhaus, J.F., H. Wolf-Watz & W.D. Donachie, 1980. Organization of genes in the ftsA-envAregion of the Escherichia coligenetic map and identification of a new ftslocus (ftsZ). J. Bacteriol. 142: 615–620.Google Scholar
  18. Margolin, W., R. Wang & M. Kumar, 1996. Isolation of an ftsZhomolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and Tubulin. J. Bacteriol. 178: 1320–1327.Google Scholar
  19. Mendelson, C.V., J. Bauld, R.J. Horodyski, J.H. Lipps, T.B. Moore & J.W. Schopf, 1992. Proterozoic and selected early cambrian microfossils: prokaryotes and protists, pp 177–183 in The Proterozoic Biosphere, edited by J.W. Schopf & C. Klein. Cambridge University Press.Google Scholar
  20. Pogliano, J., K. Pogliano, D.S. Weiss, R. Losick & J. Beckwith, 1997. Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc. Natl. Acad. Sci. USA 94: 559–564.Google Scholar
  21. Robinson, A.C., D.J. Kenan, G.F. Hatfull, N.F. Sullivan, R. Spiegelberg & W.D. Donachie, 1984. DNA sequence and transcriptional organization of essential cell division genes ftsQand ftsAof Escherichia coli: evidence for overlapping transcriptional units. J. Bacteriol. 160: 546–555.Google Scholar
  22. Robinson, A.C., D.J. Kenan, J. Sweeney & W.D. Donachie, 1986. Further evidence for overlapping transcriptional units in an Escherichia colicell envelope-cell division gene cluster: DNA sequence and transcriptional organization of the ddl ftsQregion. J. Bacteriol. 167: 809–817.Google Scholar
  23. Stahl, F.W. & N.E. Murray, 1966. The evolution of gene clusters and genetic circularity in microorganisms. Genetics 53: 569–576.Google Scholar
  24. Sullivan, N.F. & W.D. Donachie, 1984. Overlapping functional units in a cell division gene cluster in Escherichia coli. J. Bacteriol. 158: 1198–1201.Google Scholar
  25. Wang, L. & J.F. Lutkenhaus, 1998. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29: 703–710.Google Scholar
  26. Wang, L., M.M. Khattar, W.D. Donachie & J.F. Lutkenhaus, 1998. FtsI and FtsW are localized to the septum in Escherichia coli.J. Bacteriol. 180: 2810–2816.Google Scholar
  27. Wang, X. & J. Lutkenhaus, 1996a. Characterization of ftsZfrom Mycoplasma pulmonis, an organism lacking a cell wall. J. Bacteriol. 178: 2314–2319.Google Scholar
  28. Wang, X. & J. Lutkenhaus, 1996b. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol. Microbiol. 21: 313–320.Google Scholar
  29. Watanabe, H., H. Mori, T. Itoh & T. Gojobori, 1997. Genome plasticity as a paradigm of eubacterial evolution. J. Mol. Evol. 44 (Suppl 1): S57–S64.Google Scholar
  30. Weiss, D.S., J.C. Chen, J.-M. Ghigo, D. Boyd & J. Beckwith, 1999. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsQ and FtsL. J. Bacteriol. 181: 508–520.Google Scholar
  31. Yi, Q.-M. & J. Lutkenhaus, 1985. The nucleotide sequence of the essential cell division gene ftsZ. Gene 36: 241–247.Google Scholar
  32. Yi, Q.-M., S. Rockenbach, J.E. Ward jr & J. Lutkenhaus, 1985. Structure and expression of the cell division genes ftsQ, ftsA, and ftsZ. J. Mol. Biol. 184: 399–412.Google Scholar
  33. Yu, X.-C., A.H. Tran, Q. Sun & W. Margolin, 1998. Localization of cell division protein FtsK to the Escherichia coliseptum and identification of a potential N-terminal targetting domain. J. Bacteriol. 180: 1296–1304.Google Scholar
  34. Zawadzke, L.E., T.D.H. Bugg & C.T. Walsh, 1991. Existence of two D-alanine: D-alanine ligases in Escherichia coli: cloning and sequencing of the ddlAgene and purification and characterization of the DdlA and DdlB enzymes. Biochem. 30: 1673–1682.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Yevgeny A. Nikolaichik
    • 1
  • William D. Donachie
    • 2
  1. 1.Department of MicrobiologyBelarusian State UniversityMinsk
  2. 2.Institute of Cell and Molecular BiologyUniversity of EdinburghMayfield Road, EdinburghScotland

Personalised recommendations