Advertisement

Hydrobiologia

, Volume 431, Issue 2–3, pp 225–241 | Cite as

Tracing mangrove carbon in suspended matter and aquatic fauna of the Gautami–Godavari Delta, Bay of Bengal (India)

  • F. Dehairs
  • R. G. Rao
  • P. Chandra Mohan
  • A.V. Raman
  • S. Marguillier
  • L. Hellings
Article

Abstract

Stable carbon isotopic composition and C/N ratio were used to trace the input of carbon associated with mangrove litter into the estuary of the Godavari–Gautami delta system and Kakinada bay (Andhra Pradesh, India). Suspended organic matter in the mangrove channels was more depleted in 13C (average δ13C = −24.5‰) than in Kakinada bay which showed δ13C values for suspended matter (average δ13C = −22.7‰) closer to those expected for marine phytoplankton. Suspended organic matter from mangrove channels was enriched in nitrogen (average C/N atom ratio ≤ 12.7) and 13C (average δ13C = −24.5‰) relative to mangrove leaf litter, which had a C/N ratio of 75 and a δ13C value of −28‰. Lowest C/N ratios for suspended matter were observed during southwest monsoon when rainfall was highest. Although in general, mangrove litter fall was also lower during this period, no clear correlation was observed between litter fall and C/N ratio of suspended matter. In general, the composition of suspended matter pointed towards phytoplankton as a major component. Isotopic composition of zooplankton suggested selective feeding on 13C-enriched, marine phytoplankton in open Kakinada bay and on 13C-depleted organic matter, such as estuarine phytoplankton and mangrove litter, in the mangrove channels. From the δ13C signature, it appeared that mangrove carbon was present to some extent in zooplankton and macrofauna from the mangrove mudflats and channels, but the signal rapidly decreased in Kakinada bay. Nitrogen isotopic composition of zooplankton and macrofauna indicated a progressive enrichment of 15N away from the mangrove forest towards the northern part of Kakinada bay, in approach of Kakinada city. This is thought to reflect input of anthropogenic nitrogen enriched in 15N and subsequent uptake of this enriched nitrogen into the aquatic food chain.

Stable isotope tracers carbon nitrogen mangroves litterfall suspended matter zooplankton macrobenthos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alongi, D. M., K. G. Boto &; A. I. Robertson, 1992. Nitrogen and phosphorus cycles. In Robertson, A. I. &; D. M. Alongi (eds), Tropical Mangrove Ecosystems. American Geophysical Union, Washington D.C.: 251–292.Google Scholar
  2. Alongi, D. M., 1996. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J. mar. Res. 54: 123–148.Google Scholar
  3. Altabet M. A. &; R. Francois, 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem. Cycles 8: 103–116.Google Scholar
  4. Brown, S. &; A. E. Lugo, 1982. A comparison of structural and functional characteristics of saltwater and freshwater forested wetlands. In Gopal, B., R. E. Turner &; R. G. Wetzel (eds), Wetlands Ecology and Management. International Scientific, Jaipur: 223–237.Google Scholar
  5. Bunt, J. S., 1982. Studies of mangrove litterfall in tropical Australia. In Clough, B. F. (ed.), Mangrove Ecosystems in Australia. Books Australia, Miami, Fl: 223–237.Google Scholar
  6. Cabana G. &; J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. natl. Acad. Sci. U. S. A. 93: 10,844–10,847.Google Scholar
  7. Chandra Mohan, P., R. G. Rao &; F. Dehairs, 1997a. Role of Godavari mangroves (India) in the production and survival of prawn larvae. Hydrobiologia 358: 317–320.Google Scholar
  8. Chandra Mohan, P., N. Sreenivas, N. V. Prasad and A. V. V. S. Rao, 1997b. Zooplankton diversity and seasonal fluctuations in Kakinada bay with special reference to mangrove habitat, In Final Report of European Community INCO-DC contract CI1*CT930320, An Assessment of the Ecological Importance of Mangroves in the Kakinada Area, Andhra Pradesh, India. Part II: 1-21.Google Scholar
  9. Cifuentes, L. A., J. H. Sharp &; M. L. Fogel, 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnol. Oceanogr. 33: 1102–1115.Google Scholar
  10. Cifuentes, L. A., R. B. Coffin, L. Solorzano, W. Cardenas, J. Espinoza &; R. R. Twilley, 1996. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuar. coast. shelf Sci. 43: 781–800.Google Scholar
  11. Coplen T. B., 1996. New guidelines for reporting stable hydrogen, carbon and oxygen isotope-ratio data. Geochim. Cosmochim. Acta 60: 3359–3360.Google Scholar
  12. Créach, V., M. T. Schricke, G. Bertru &; A. Mariotti, 1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers. Estuar. coast. shelf Sci. 44: 599–611.Google Scholar
  13. Day, J. W. Jr., W. H. Conner, F. Ley-Lou, H. H. Day and A. M. Navarro, 1987. The productivity and composition of mangrove forests, Laguno de Terminos, Mexico. Aquat. Bot. 27: 267–284.Google Scholar
  14. Del Giorgio, P. A. &; R. L. France, 1996. Ecosystem specific patterns in the relationship between zooplankton and POM or microplankton ? 13C. Limnol. Oceanogr. 41: 359–365.Google Scholar
  15. Fontugne, M. R. &; J.-C. Duplessy, 1981. Organic carbon isotopic fractionation by marine plankton in the temperature range-1 to 31ºC. Oceanol. Acta 4: 85–90.Google Scholar
  16. Fry, B. M. &; E. B. Sherr, 1984. ? 13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 13–47.Google Scholar
  17. Hansson, S., J. E. Hobbie, R. Elmgren, U. Larsson, B. Fry &; S. Johansson, 1997. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 78: 2249–2257.Google Scholar
  18. Hellings L., F. Dehairs, M. Tackx, W. Baeyens &; E. Keppens, 1999. Origin and fate of organic carbon in the freshwater part of the Scheldt estuary as traced by stable carbon isotope composition. Biogeochemistry 47: 167–186.Google Scholar
  19. Hemminga, M. A., F. J. Slim, J. Kazungu, G. M. Ganssen, J. Nieuwenhuize &; M. Kruyt, 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi bay, Kenya). Mar. Ecol. Progr. Ser. 106: 291–301.Google Scholar
  20. Horrigan, S. G., J. P. Montoya, J. L. Nevins &; J. J. McCarthy, 1990. Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuar. coast. shelf Sci. 30: 393–410.Google Scholar
  21. Kazungu, J. M., 1996. Nitrogen-transformational processes in a tropical mangrove ecosystem (Gazi bay, Kenya). Doctoral Thesis, Vrije Universiteit Brussel: 198 pp.Google Scholar
  22. Lin, G., T. Banks &; L. da Silveria Lobo O'Reilly Sternberg, 1991. Variation in ? 13C values for the seagrass Thalassia testudinum and its relations to mangrove carbon. Aquat. Bot. 40: 333–341.Google Scholar
  23. Macko, S. A. &; N. E. Ostrom, 1994. Pollution studies using stable isotopes. In Lajtha, K. &; R. H.Michener (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific: 45-62.Google Scholar
  24. Marguillier, S., 1998. Stable isotope ratios and food web structure of aquatic ecosystems. Doctoral Thesis, Vrije Universiteit Brussel: 209 pp.Google Scholar
  25. Marguillier S., G. Van der Velde, F. Dehairs, M. A. Hemminga &; S. Rajagopal, 1997. Trophic relationships in an interlinked mangrove seagrass ecosystem as traced by ? 13C and ? 15N. Mar. Ecol. Progr. Ser. 151: 115–121.Google Scholar
  26. McClelland, J. W., I. Valiela &; R. H. Michener, 1997. Nitrogenstable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 42: 930–937.Google Scholar
  27. Minagawa, M. &; E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between ? 15N and animal age. Geochim. Cosmochim. Acta 48: 1135–1140.Google Scholar
  28. Murthy, N. V. S. S., 1997. Hydrography, In Final Report of European Community INCO-DC contract CI1*CT930320, An Assessment of the Ecological Importance of Mangroves in the Kakinada Area, Andhra Pradesh, India, Part III: 16-25.Google Scholar
  29. Narasimham, K. A., G. S. D. Selvaraj &; S. Lalitha Devi, 1984. The molluscan resources and ecology of Kakinada bay, Mar. Fish. Infor. Ser. I&;B.E. 59, 1–16.Google Scholar
  30. Newell, R. I. E., N. Marshall, A. Sasekumar &; V. C. Chong, 1995. Relative importance of benthic microalgae, phytoplankton and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar. Biol. 123: 595–606.Google Scholar
  31. Odum, W. E. &; E. J. Heald, 1972. Trophic analysis of an estuarine mangrove community. Bull. mar. Sci. 22: 671–738.Google Scholar
  32. Odum, W. E. &; E. J. Heald, 1975. The detritus based food web of an estuarine mangrove community. In Cronin, L. E. (ed.), Estuarine Research. Academic Press, New York: 265–286.Google Scholar
  33. Pool, D. J., A. E. Lugo &; S. C. Snedaker, 1975. Litter production in mangrove forests of southern Florida and Puerto Rico. In Walsh, G. E., S.C. Snedaker &; H. J. Teas (eds), Proceedings of the International Symposium on Biology and Management of Mangroves. University of Florida, Gainesville: 385–393.Google Scholar
  34. Rao, R. G., 1997. Tracing the carbon flow in the mangrove ecosystem of Godavari delta, India. Doctoral Thesis in Human Ecology, Vrije Universiteit Brussel: 142 pp.Google Scholar
  35. Rao, R. G., A. F. Woitchik, L. Goeyens, A. Van Riet, J. Kazungu &; F. Dehairs, 1994. Carbon, nitrogen contents and stable isotope abundance in mangrove leaves from an east African Coastal Lagoon (Kenya). Aquat. Bot. 47: 175–183.Google Scholar
  36. Redfield A. C., B. H. Ketchum &; F. A. Richards, 1963. The influence of organisms on the composition of seawater. In Hill, M. N. (ed.), The Sea. Willey, New York, 2: 26–77.Google Scholar
  37. Rice D. L., 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar. Ecol. Progr. Ser. 9: 153–162.Google Scholar
  38. Robertson, A. I., D. M. Alongi &; K. G. Boto, 1992. Food chains and carbon fluxes. In Robertson, A. I. &; D. M. Alongi (eds), Tropical Mangrove Ecosystems. American Geophysical Union: 293-326.Google Scholar
  39. Rodelli, M. R., J. N. Gearing, P. J. Gearing, N. Marshall &; A. Sasekumar, 1984. Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystem. Oecologia 61: 326–333.Google Scholar
  40. Satyanarayana, B., 1997. Biology of mangroves, In Final Report of European Community INCO-DC contract CI1*CT930320, An Assessment of the Ecological Importance of Mangroves in the Kakinada Area, Andhra Pradesh, India. Part III: 13-15.Google Scholar
  41. Slim, F. J., P. M. Gwada, M. Kodjo &; M. A. Hemminga, 1996. Biomass and litterfall of Ceriops tagal and Rhizophora mucronata in the mangrove forest of Gazi bay, Kenya. Mar. Freshwat. Res. 47: 999–107.Google Scholar
  42. Sreenivas, N., 1998. Zooplankton production and distribution in mangrove habitat of Godavari Estuary. Kakinada, PhD Thesis, Andhra University: 222 pp.Google Scholar
  43. Tack, J., 1997. Behavioural aspects of the mangrove oyster Saccostrea cucullata (Von Born, 1778) explaining its macro and micro distribution along the Kenyan coast. Doctoral thesis, Vrije Universiteit Brussel: 235 pp.Google Scholar
  44. Tackx, M., X. Irigoin, M. H. Daro, J. Castel, X. Zhang &; J. Nijs, 1995a. Copepod feeding in the Westerschelde and the Gironde. Hydrobiologia 311: 71–83.Google Scholar
  45. Tackx, M., L. Zhu, W. De Coster, R. Billones &; M. H. Daro, 1995b. Measuring selectivity of feeding by estuarine copepods using image analysis combined with microscopy and Coulter counting. ICES J. mar. Sci. 52: 419–425.Google Scholar
  46. Tan, F. C. &; P. M. Strain, 1983. Sources, sinks and distribution of organic carbon in the St Lawrence Estuary, Canada. Geochim. Cosmochim. Acta 47: 125–132.Google Scholar
  47. Twilley, R. R., 1988. Coupling of mangroves to the productivity of estuarine and coastal waters. In Jansson, B. O. (ed.), Coastal-Offshore Ecosystem Interactions. Springer-Verlag, Germany: 155–180.Google Scholar
  48. Twilley, R. R., M. Pozo, V. H. Garcia, V. H. Rivera-Monroy, R. Zambrano &; A. Bodero, 1997. Litter dynamics in riverine mangrove forests in the Guayas river estuary, Ecuador. Oecologia 111: 109–122.Google Scholar
  49. Watayakorn, G., E. Wolanski &; B. Kjerfve, 1990. Mixing, trapping and outwelling in the Klong Ngoa mangrove swamp, Thailand. Estuar. coast. shelf Sci. 31: 667–688.Google Scholar
  50. White D. S. &; B. L. Howes, 1994. Nitrogen incorporation into decomposing litter of Spartina alterniflora. Limnol. Oceanogr. 39: 133–140.Google Scholar
  51. Williams, W. T., J. S. Bunt &; N. C. Duke, 1981. Mangrove litterfall in northeastern Australia. II. Periodicity. Aust. J. Bot. 29: 555–563.Google Scholar
  52. Woitchik, A. F., B. Ohowa, J. M. Kazungu, R. G. Rao, L. Goeyens &; F. Dehairs, 1997. Nitrogen enrichment during decomposition of mangrove leaf litter in an east African coastal lagoon (Kenya): Relative importance of biological nitrogen fixation. Biogeochemistry 39: 15–35.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • F. Dehairs
  • R. G. Rao
  • P. Chandra Mohan
  • A.V. Raman
  • S. Marguillier
  • L. Hellings

There are no affiliations available

Personalised recommendations