Advertisement

Journal of Applied Electrochemistry

, Volume 30, Issue 6, pp 737–743 | Cite as

3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solution

  • R. Tremont
  • H. De Jesús-Cardona
  • J. García-Orozco
  • R.J. Castro
  • C.R. Cabrera
Article

Abstract

3-mercaptopropyltrimethoxysilane (MPS) has been used as a copper corrosion inhibitor in 0.100 mol L−1 KCl solution. The inhibition was studied as a function of the MPS pretreatment concentration in ethanol. The MPS concentration used was between 1.0 × 10−8 mol L−1 and 1.0 × 10−1 mol L−1. A freshly-cleaned Cu electrode was inserted in an ethanolic solution of MPS for 30 min for pretreatment, and was then exposed to a 0.100 mol L−1 KCl aqueous solution for 1 h. From the polarization resistance, the inhibition efficiency improved with increase in MPS concentration during the pretreatment. The MPS adsorption on Cu followed a Langmuir adsorption behaviour. However, at MPS concentrations larger than 1.0 × 10−4 mol L−1 the inhibition decreased. Moreover, the inhibition efficiency decreased with increase in the exposure time of the MPS modified Cu electrode in the KCl aqueous solution. Polarization studies suggest that MPS is an anodic as well as a cathodic inhibitor, in the presence of dissolved oxygen. X-ray photoelectron spectroscopy (XPS) analysis of the Cu samples showed that the organic compound modifies the Cu surface and scanning electron microscopy (SEM) studies indicated that MPS protects the Cu surface when exposed for 350 h to laboratory environment. Polarized grazing angle Fourier transform-infrared (FTIR) microscopy analysis determined the presence of a polymer on the Cu surface.

copper corrosion inhibition 3-mercaptopropyltrimethoxysilane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Trabanelli, in F. Mansfeld (Ed.), ‘Corrosion Mechanisms’ (Marcel Dekker, New York, 1987), p. 119.Google Scholar
  2. 2.
    K. Tatsuya, N. Hiroshi and A. Kunitsugu, J. Electrochem. Soc. 143 (1996) 3866.Google Scholar
  3. 3.
    A.N. Starchak, A.N. Krasovskii, V.A. Anishchenko and L.D. Kosukhina, Zashch. Met. 30 (1994) 405.Google Scholar
  4. 4.
    M. Th. Makhlouf, S.A. El-Shatory and A. El-Said, Mater. Chem. Phys. 43 (1996) 76. Google Scholar
  5. 5.
    M. Th. Makhlouf and M.H. Wahdan, Pol. J. Chem. 69 (1995) 1072.Google Scholar
  6. 6.
    M. Th. Makhlouf, M.H. Wahdan and M. Hassan, ACH-Models Chem. 132 (1995) 903.Google Scholar
  7. 7.
    M.H. Wahdan, Mater. Chem. Phys. 49 (1997) 135.Google Scholar
  8. 8.
    Y.I. Mikshis, L.A. Rastenite and A.I. Rutavichus, Pot. Met. 33 (1997) 288.Google Scholar
  9. 9.
    A. Srhiri, Y. Derbali and T. Picaud, Corrosion 51 (1995) 788.Google Scholar
  10. 10.
    S. Sankarapapavinasam and M.F. Ahmed, J. Appl. Electrochem. 22 (1995) 390.Google Scholar
  11. 11.
    G. Brunoro, A. Frignani and L. Tommesani, Ann. Univ. Ferrara, Sez. V, Suppl. 10, (1995), p. 1053.Google Scholar
  12. 12.
    K. Mori and Y. Nakamura, J. Polym. Sci. Polym. Let. Ed. 21 (1983) 889.Google Scholar
  13. 13.
    D.L. Seymour, S. Bao, C.F. McConville, M.D. Crapper, D.P. Woodruff and R.G. Jones, Surf. Sci. 189/190 (1987) 529.Google Scholar
  14. 14.
    J.Y. Gui, D.A. Stern, D.G. Frank, F. Lu, D.C. Zapien and A. Hubbard, Langmuir 7 (1991) 955.Google Scholar
  15. 15.
    J. Uehara and K. Aramaki, J. Electrochem. Soc. 138 (1991) 3245.Google Scholar
  16. 16.
    M.D. Porter, T.B. Bright, D.L. Allara and C.E.D. Chidsey, J. Am. Chem. Soc. 109 (1987) 3559.Google Scholar
  17. 17.
    G.M. Whitesides and P.E. Laibinis, Langmuir 6 (1990) 87.Google Scholar
  18. 18.
    M.M. Walczak, C. Chung, S.M. Stole, C.A. Widrig and M.D. Porter, J. Am. Chem. Soc. 113 (1991) 2370.Google Scholar
  19. 19.
    C.A. Widrig, C. Chung and M.D. Porter, J. Electroanal. Chem. 310 (1991) 335.Google Scholar
  20. 20.
    S.M. Stole and M.D. Porter, Langmuir 6 (1990) 1199.Google Scholar
  21. 21.
    P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh and R.G. Nuzzo, J. Am. Chem. Soc. 113 (1991) 7152.Google Scholar
  22. 22.
    P.E. Laibinis and G.M. Whitesides, J. Am. Chem. Soc. 114 (1992) 1990.Google Scholar
  23. 23.
    L.C.F. Blackman and M.J.S. Dewar, J. Chem. Soc. 171 (1990) 1957. Google Scholar
  24. 24.
    M. Musiani M.G. Mengoli, M. Fleischmann and R.B. Lowry, J. Electroanal. Chem. 217 (1987) 187.Google Scholar
  25. 25.
    M. Ohsawa and W. Suetaka, Corros. Sci. 19 (1979) 709.Google Scholar
  26. 26.
    G. Trabanelli and V. Carassitti, in M.G. Fontana and R.W. Staehle (Eds), ‘Advances in Corrosion Science and Technology’ Vol. 1 (Plenum Press, New York, 1970), p. 147.Google Scholar
  27. 27.
    J.C. Marconato, L.O. Bulhes and M.L. Temperini, Electrochim. Acta 43 (1998) 771.Google Scholar
  28. 28.
    R. Haneda and K. Aramaki, J. Electrochem. Soc. 145 (1998) 1856.Google Scholar
  29. 29.
    R. Haneda, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 144 (1997) 1215.Google Scholar
  30. 30.
    K. Suwa, T. Nishimoto, Y. Nagaoka and S. Aida, Bull. Soc. Salt Sci. Jpn. 15 (1961) 153.Google Scholar
  31. 31.
    Y. Yamamoto, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 140 (1993) 436.Google Scholar
  32. 32.
    C. Miller, P. Cuendet and M. Gratzel, J. Phys. Chem. 95 (1991) 877.Google Scholar
  33. 33.
    C. Miller and M. Gratzel, J. Phys. Chem. 95 (1991) 5225.Google Scholar
  34. 34.
    Y. Yamamoto, H. Nischihara and K. Aramaki, J. Electrochem. Soc. 140 (1993) 2.Google Scholar
  35. 35.
    M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 141 (1994) 8.Google Scholar
  36. 36.
    W.R. Thompson, M. Cai, M. Ho and J.E. Pemberton, Langmuir 13 (1997) 2291.Google Scholar
  37. 37.
    M. Itoh, H. Nishihara and K. Aramaki, J. Electrochem. Soc. 142 (1995) 6.Google Scholar
  38. 38.
    Y. Fend, W.-K. Teo, K.-S. Siow, Z. Gao, K.-L. Tan and A.-K. Hsieh, J. Electrochem. Soc. 144 (1997) 1.Google Scholar
  39. 39.
    H.P. Lee and K. Nobe, J. Electrochem. Soc. 133 (1986) 2035.Google Scholar
  40. 40.
    A.M. Beccaria and C. Bertolotto, Electrochim. Acta 42 (1997) 9.Google Scholar
  41. 41.
    S. Sankarapapavinasam and M.F. Ahmed, J. Appl. Electrochem. 22 (1990) 390.Google Scholar
  42. 42.
    R. Zvauya and J.L. Dawson, J. Appl. Electrochem. 24 (1994) 943.Google Scholar
  43. 43.
    L.H. Dubois and R.G. Nuzzo, Annu. Rev. Phys. 43 (1992) 437.Google Scholar
  44. 44.
    A. Morneau, A. Manivannan and C.R. Cabrera, Langmuir 10 (1994) 3940.Google Scholar
  45. 45.
    J. Wood and R. Sharman, Langmuir 10 (1994) 2307.Google Scholar
  46. 46.
    G. Che and C.R. Cabrera, J. Electroanal. Chem. 417 (1996) 155.Google Scholar
  47. 47.
    G. Che, A. Manivannan and C.R. Cabrera, Physica A 231 (1996) 304.Google Scholar
  48. 48.
    S.K. Jung and G.S. Wilson, Anal. Chem. 68 (1996) 591.Google Scholar
  49. 49.
    M. Itoh, H. Nishihara and K.J. Aramaki, J. Electrochem. Soc. 142 (1995) 3696.Google Scholar
  50. 50.
    W.R. Thompson and J.E. Pemberton, Chem. Mater. 7 (1995) 1309.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • R. Tremont
    • 1
  • H. De Jesús-Cardona
    • 2
  • J. García-Orozco
    • 1
  • R.J. Castro
    • 3
  • C.R. Cabrera
    • 1
  1. 1.Department of ChemistryUniversity of Puerto RicoSan Juan
  2. 2.Department of ChemistryUniversity of Puerto Rico, Bayamón Technological University CollegeBayamón
  3. 3.Department of ChemistryUniversity of Puerto Rico, Cayey University CollegeCayey

Personalised recommendations