Advertisement

Genetica

, Volume 107, Issue 1–3, pp 197–207 | Cite as

Molecular domestication – more than a sporadic episode in evolution

  • Wolfgang J. Miller
  • John F. McDonald
  • Danielle Nouaud
  • Dominique Anxolabéhère
Article

Abstract

Transposable elements are short but complex pieces of DNA or RNA containing a streamlined minimal-genome with the capacity for its selfish replication in a foreign genomic environment. Cis-regulatory sections within the elements orchestrate tempo and mode of TE expression. Proteins encoded by TEs mainly direct their own propagation within the genome by recruitment of host-encoded factors. On the other hand, TE-encoded proteins harbor a very attractive repertoire of functional abilities for a cell. These proteins mediate excision, replication and integration of defined DNA fragments. Furthermore, some of these proteins are able to manipulate important host factors by altering their original function. Thus, if the host genome succeeds in domesticating such TE-encoded proteins by taming their ‘anarchistic behavior,’ such an event can be considered as an important evolutionary innovation for its own benefit. In fact, the domestication of TE-derived cis-regulatory modules and protein coding sections took place repeatedly in the course of genome evolution. We will present prominent cases that impressively demonstrate the beneficial impact of TEs on host biology over evolutionary time. Furthermore, we will propose that molecular domestication might be considered as a resumption of the same evolutionary process that drove the transition from ‘primitive genomes’ to ‘modern’ ones at the early dawn of life, that is, the adaptive integration of a short piece of autonomous DNA into a complex regulatory network.

Drosophila genome evolution molecular domestication P element transposable elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal A., Q.M. Eastman & D.G. Schatz, 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.PubMedCrossRefGoogle Scholar
  2. Andrews, J.D. & G.B. Gloor, 1995. A role for the KP leucine zipper in regulating P element transposition in Drosophila. Genetics 141: 587–594.PubMedGoogle Scholar
  3. Berg, D.E. & M.M. Howe, 1989. Mobile DNA, Am. Soc. Microbiol., Washington, DC.Google Scholar
  4. Best, S., P. Le Tissier, G. Towers & J.P. Stoye, 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382: 826–829.PubMedCrossRefGoogle Scholar
  5. Biessmann, H., A. Valgiersdottir, A. Lofsky, C. Chin, B. Ginther, R. Levis & M.P. Pardue, 1992. Het-A, a transposable element specifically involved in ‘healing’ broken chromosome ends in Drosophila. Mol. Cell. Biol. 12: 3910–3918.PubMedGoogle Scholar
  6. Boeke. J.D., 1997. LINEs and Alus — the polyA connection. Nat. Genet. 16: 6–7.PubMedCrossRefGoogle Scholar
  7. Britten, R., 1996. DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl. Acad. USA 93: 9374–9377.CrossRefGoogle Scholar
  8. Brosius, J., 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115–134.PubMedCrossRefGoogle Scholar
  9. Clark, J.B. & M.G. Kidwell, 1997. A phylogenetic perspective of P transposable element evolution in Drosophila. Proc. Natl. Acad. Sci. USA 94: 11428–11433.PubMedCrossRefGoogle Scholar
  10. Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.PubMedCrossRefGoogle Scholar
  11. Cordonnier A., J.F. Casella & T. Heidmann, 1995. Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. J. Virol. 69: 5890–5897.PubMedGoogle Scholar
  12. Danilevskaya, O., A. Lofsky, E. Kurenova & M.L. Pardue, 1993. The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. Genetics 134: 531–543.PubMedGoogle Scholar
  13. Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.PubMedCrossRefGoogle Scholar
  14. Dorer, D. & S. Henikoff, 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002.PubMedCrossRefGoogle Scholar
  15. Dorer, D. & S. Henikoff, 1997. Transgene repeat arrays interact with distal heterochromatin and cause silencing in cis and trans. Genetics 147: 1181–1190.PubMedGoogle Scholar
  16. Eickbush T., 1999. Telomerase and retrotransposons: which came first? Science 277: 911–912.CrossRefGoogle Scholar
  17. Engels, W.R., 1989. P-elements in Drosophila melanogaster, pp. 437–484, in Mobile DNA, edited by D.E. Berg, and M.M. Howe. American Society for Microbiology, Washington.Google Scholar
  18. Gloor, G.B., C.R. Preston, D.M. Johnson-Schlitz, N.A. Nassif, R.W. Phillis, W.K. Benz, H.M. Robertson & W.R. Engels, 1993. Type I repressors of P element mobility. Genetics 135: 81–95.PubMedGoogle Scholar
  19. Hagemann, S., W.J. Miller & W. Pinsker, 1992. Identification of a complete P element in the genome of Drosophila bifasciata. Nucl. Acids Res. 20: 409–413.PubMedGoogle Scholar
  20. Hagemann, S., W.J. Miller & W. Pinsker, 1994. Two distinct P element subfamilies in the genome of Drosophila bifasciata. Mol. Gen. Genet. 244: 168–175.PubMedCrossRefGoogle Scholar
  21. Hagemann S., E. Haring & W. Pinsker, 1996. A new P element subfamily from Drosophila tristis, D. ambigua and D. obscura. Genome 39: 978–985.PubMedGoogle Scholar
  22. Hagemann, S., W.J. Miller, E. Haring & W. Pinsker, 1998a. Nested insertions of short mobile sequences in Drosophila P elements. Chromosoma: 107: 6–16.PubMedCrossRefGoogle Scholar
  23. Hagemann, S., E. Haring & W. Pinsker, 1998b. Horizontal transmission vs. vertical inheritance of P elements in Drosophila and Scaptomyza: Has the M-type subfamily spread from East Asia? J. Zool. Syst. Evol. Res. 36: 75–83.CrossRefGoogle Scholar
  24. Haring, E., S. Hagemann, P. Lankinen & W. Pinsker, 1998. The phylogenetic position of Drosophila eskoi deduced from P element and Adh sequence data. Hereditas 128: 235–244.PubMedCrossRefGoogle Scholar
  25. Henikoff S. & M.A. Matzke, 1997. Exploring and explaining epigenetic effects. Trends Genet. 13: 293–295.PubMedCrossRefGoogle Scholar
  26. Hiom K., M. Melek & M. Gellert, 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463–470.PubMedCrossRefGoogle Scholar
  27. Jensen, S., M.P. Gassama & T. Heidmann, 1999. Taming of transposable elements by homolog-dependent gene silecing. Nat. Genet. 21: 209–212.PubMedCrossRefGoogle Scholar
  28. Jurka, J., 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8: 333–337.PubMedCrossRefGoogle Scholar
  29. Jurka, J. & V.V. Kapitonov, 1999. Sectorial mutagenesis by transposable elements. Genetica 107: 239–248.PubMedCrossRefGoogle Scholar
  30. Ketting R.F., T.H. Haverkamp, H.G. van Luenen & R.H. Plasterk 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99: 133–141.PubMedCrossRefGoogle Scholar
  31. Kidwell, M.G., 1994. The evolutionary history of the P family of transposable elements. J. Hered. 85: 339–346.PubMedGoogle Scholar
  32. Kidwell, M.G. & D. Lish, 1997. Transposable elements as source of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704–7711.PubMedCrossRefGoogle Scholar
  33. Lee, C.C., Y.M. Mul & D.C. Rio, 1996. The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on the P-element DNA. Mol. Cell. Biol. 16: 5616–5622.PubMedGoogle Scholar
  34. Lee, C.C., E.L. Beall & D.C. Rio, 1998. DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. EMBO 17: 4166–4174.CrossRefGoogle Scholar
  35. Levis, R.W., R. Ganesan, K. Houtchens, L.A. Tolar & F. Sheen, 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell, 75: 1083–1093.PubMedCrossRefGoogle Scholar
  36. Lingner J., T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad & T.R. Cech, 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.PubMedCrossRefGoogle Scholar
  37. Long, Q., C. Bengra, C. Li, F. Kutlar & D. Tuan, 1998. A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human beta-globin locus control region. Genomics 54: 542–555.PubMedCrossRefGoogle Scholar
  38. Mason, J.M. & H. Biessmann, 1995. The unusual telomeres of Drosophila. Trends Genet. 11: 58–62.PubMedCrossRefGoogle Scholar
  39. McDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Dev. 3: 855–864.PubMedCrossRefGoogle Scholar
  40. McDonald, J.F., 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10: 123–126.CrossRefGoogle Scholar
  41. McDonald J.F., 1998. Transposable elements, gene silencing and macroevolution. Trends Ecol. Evol. 13: 94–95.CrossRefGoogle Scholar
  42. Miller, W.J., S. Hagemann, E. Reiter & W. Pinsker 1992. P homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc. Natl. Acad. Sci. USA 89: 4018–4022.PubMedCrossRefGoogle Scholar
  43. Miller, W.J., N. Paricio, S. Hagemann, M.J. Martinez-Sebastián, W. Pinsker & R. DeFrutos, 1995. Structure and expression of the clustered P element homologues in Drosophila subobscura and D. guanche. Gene 156: 167–174.PubMedCrossRefGoogle Scholar
  44. Miller, W.J., L. Kruckenhauser & W. Pinsker, 1996. The impact of TEs on genome evolution in animals and plants, pp. 21–35 in Transgenic organisms: Risk assessment of deliberate release edited by K. Wöhrmann and J. Tomiuk. Birkhäuser, Basel.Google Scholar
  45. Miller, W.J., J.F. McDonald & W. Pinsker, 1997. Molecular domestication of mobile elements. Genetica 100: 261–270.PubMedCrossRefGoogle Scholar
  46. Misra, S. & D.C. Rio, 1990. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell 62: 269–284.PubMedCrossRefGoogle Scholar
  47. Misra, S., R.M. Buratowsky, T. Ohkawa & D.C. Rio, 1993. Cytotype control of Drosophila melanogaster P element transposition: genomic position determines maternal repression. Genetics 135: 785–800.PubMedGoogle Scholar
  48. Nakayama J., M. Saito, H. Nakamura, A. Matsuura & F. Ishikawa, 1997. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88: 875–884.PubMedCrossRefGoogle Scholar
  49. Nouaud, D. & D. Anxolabéhère, 1997. P element domestication: a stationary P element may encode a 66 kDa repressor-like protein in the Drosophila montium species subgroup. Mol.Biol.Evol. 14: 1132–1144.PubMedGoogle Scholar
  50. Nouaud, D., B. Boeda, L. Levy & D. Anxolabéhère, 1999. A P element has induced intron formation in Drosophila. Mol. Biol. Evol. 16: 1503–1510.PubMedGoogle Scholar
  51. O'Hare, K. & G.M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.PubMedCrossRefGoogle Scholar
  52. O'Hare, K., A. Driver, S. McGrath & D.M. Johnson-Schlitz, 1992. Distribution and structure of cloned P elements from the Drosophila melanogaster P strain. Genet. Res. 60: 33–41.PubMedCrossRefGoogle Scholar
  53. Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.PubMedCrossRefGoogle Scholar
  54. Pardue, M.L., O. Davilevskaya, K. Lowenhaupt, F. Slot & K.L Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48–52.PubMedCrossRefGoogle Scholar
  55. Pardue, M.L., O.N. Danilevskaya, K.L. Traverse & K. Lowenhaupt, 1997. Evolutionary links between telomeres and transposable elements. Genetica 100: 73–84.PubMedCrossRefGoogle Scholar
  56. Paricio, N., M. Pérez-Alonso, M.J. Martínez-Sebastiá & R. de Frutos, 1991. P sequences of Drosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein. Nucl. Acids Res. 19: 6713–6718.PubMedGoogle Scholar
  57. Paricio, N., W.J. Miller, W. Pinsker, S. Hagemann, R. deFrutos & M.J. Martinez-Sebastián, 1996. Structure and origin of the P element related gene cluster of Drosophila madeirensis. Genome 39: 823–829.PubMedGoogle Scholar
  58. Pimpinelli S., M. Berloco, L. Fanti, P.S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable structural components of the Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.PubMedCrossRefGoogle Scholar
  59. Pinsker, W., W.J. Miller & S. Hagemann, 1993. P-elements of Drosophila: Genomic parasites as genetic tools, pp. 25–42 in Transgenic organisms: Risk assessment of deliberate release, edited by K. Wöhrmann and J. Tomiuk. Birkhäuser, Basel.Google Scholar
  60. Rio, D.C., 1990. Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24: 543–578.PubMedCrossRefGoogle Scholar
  61. Russo, C.A., N. Takezaki & M. Nei, 1995. Molecular phylogeny and divergence times of Drosophilia species. Mol. Biol. Evol. 12: 391–404.PubMedGoogle Scholar
  62. SanMiguel P., A. Tikhonov, Y.K Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotransposons in the intergenic region of the maize genome. Science 274: 765–768.PubMedCrossRefGoogle Scholar
  63. Selker, E.U., 1997. Epigenetic phenomena in filamentous fungi: useful paradigm or repeat-induced confusion. Trends Genet. 13: 296–301.PubMedCrossRefGoogle Scholar
  64. Sheen, F. & R.W. Levis, 1994. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc. Natl. Acad. Sci. USA 91: 12510–12514.PubMedCrossRefGoogle Scholar
  65. Simonelig, M. & D. Anxolabéhère, 1991. A P element of Scaptomyza pallida is active in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 88: 6102–6106.PubMedCrossRefGoogle Scholar
  66. Simonelig, M. & D. Anxolabéhère, 1994. P-elements are old components of the Scaptomyza pallida genome. J. Mol. Evol. 38: 232–240.CrossRefGoogle Scholar
  67. Smit, A.F.A., 1996. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6: 743–748.PubMedCrossRefGoogle Scholar
  68. Swofford, D., 1990. PAUP: phylogenic analysis using parsimony Version 4.0. Illinois Natural History Survey, Champaign.Google Scholar
  69. Tabara H., M. Sarkissian, W.G. Kelly, J. Fleenor, A. Grishok, L. Timmons, A. Fire & C.C. Mello, 1999. The rde-1 gene, RNA interference and transposon silencing in C. elegans. Cell 99: 123–132.PubMedCrossRefGoogle Scholar
  70. Traverse, K.L. & M.L. Pardue, 1988. A spontaneously open ring chromosome of Drosophila melanogaster has acquired He-T DNA at both new telomeres. Proc. Natl. Acad.Sci. USA. 85: 8116–8120.PubMedCrossRefGoogle Scholar
  71. Wolffe A.P. & M.A. Matzke, 1999. Epigenetics: regulation through repression. Science 286: 481–486.PubMedCrossRefGoogle Scholar
  72. Witherspoon, D.J., 1999. Selective constraints on P element evolution. Mol. Biol. Evol. 16: 472–478.PubMedGoogle Scholar
  73. Yoder, J., C. Walsh & T. Bestor, 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Wolfgang J. Miller
    • 1
  • John F. McDonald
    • 2
  • Danielle Nouaud
    • 3
  • Dominique Anxolabéhère
    • 3
  1. 1.Institute of Medical Biology, A.G. General GeneticsUniversity of ViennaViennaAustria
  2. 2.Department of GeneticsUniversity of GeorgiaAthensUSA
  3. 3.Institut Jacques Monod, Dynamique du Génome et EvolutionUniversités P. et M. Curie et D.DiderotParisFrance (Phone

Personalised recommendations